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Abstract: Recently, some combinatorial properties for the the Catalan-Larcombe-French numbers have been proved by Sun 

and Wu, and Zhao. Recently, Z. W. Sun conjectured that the root of the Catalan-Larcombe-French numbers is log-concave. In 

this paper, we confirm Sun's conjecture by establishing the lower and upper bound for the ratios of the Catalan-Larcombe-French 

numbers. 
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1. Introduction 

The aim of this paper is to prove the log-concavity of 

� ���� ����
	

, where ��  is the n-th Catalan-Larcombe-French 

number. This confirms a conjecture given by Zhi Wei Sun [8]. 

Recall that an infinite sequence �� is said to be 

log-concave if for n≥1, 

��
 ≥ �������� 

The Catalan-Larcombe-French numbers Pn were first 

defined by Catalan in terms of the “Segner numbers”. The n-th 

Catalan-Larcombe-French number is generated by either of 

the finite sums 

�� = 2� � �−4�� �2�� − ��
� − � �
 �� − �� �

��/
 

��!
, � ≥ 0 

(where the function [x], for arbitrary x real, is the greatest 

integer not exceeding x) or 

�� = 1�! � �2�� � �2&& � �2��! �2&�!�! &! , � ≥ 0
��'��

 

The infinite sequence (��)��!	 is known as the 

Catalan-Larcombe-French sequence (Sequence No. A053175 

in Sloane's database [7]). These numbers occur in the theory of 

elliptic integrals, and there are relations to the 

arithmetic-geometric-mean. Furthermore, the sequence 

satisfies the following recurrence relation: 

�� = *+,�-�,���.
�- ���� − �
*�����-

�- ���
         (1) 

for n≥2, with the initial values given by P0 = 1 and P1 = 8. For 

more details, see [1-6]. 

The combinatorial properties for the 

Catalan-Larcombe-French sequence have been considered. 

The log-behavior of the Catalan-Larcombe-French sequence 

was studied by Zhao [12]. Moreover, she proved that the 

sequence (��)��!	 is log-balanced. Xia and Yao [11] proved 

that the sequences /0�120� 3��!
	

 and � ���� ���!
	  are strictly 

increasing. The 2-log-convexity of the sequence (��)��! 	 was 

proved by Sun and Wu [8]. Furthermore, Sun and Jin [9] 

proved the log-concavity for the sequence / 0�0�423���
	

, which 

confirmed a conjecture due to Sun and Wu [8]. 

Recently, Sun [10] posed the following conjecture: 

Conjecture 1.1. The sequence � ���� ����
	

is log-concave. 

Moreover, the sequence � ������12 / ���� ����
	

is strictly 

decreasing. 

In this paper, we will establish lower and upper bounds for 0�0�42 by utilizing the recurrence relation of Pn and then present 

a proof of Conjecture 1.1. 
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2. Lower and Upper Bounds for 
565647 

In order to prove Conjecture 1.1, we need to prove several 

inequalities for The Catalan-Larcombe-French numbers Pn 

and establish lower and upper bounds for 
0�0�42 . We first 

establish a lower bound for 
0�0�42. 

Lemma 2.1. For n ≥7, we have 

9��� < 0�0�42                 (2) 

where 

9��� = �;+*�<�
!�-��=����.
�
����<           (3) 

Proof. We are ready to prove Lemma 2.1 by induction on n. 

It is easy to check that Inequality (2) is true when n = 7. 

Suppose that Lemma 2.1 holds when n = m≥7, namely, 

�;+*><�
!>-��=>���.
�
>���< < 0?0?42         (4) 

In order to prove this lemma, we need to prove that (2) 

holds when n = m+ 1, that is, 

�;+*�>���<�
!�>���-��=�>������.
�
�>������< < 0?120?     (5) 

Thanks to (1) and (4), we deduce that 

 �>���> = 8�3�B + 1�
 − 3�B + 1� + 1��B + 1�
 − 128B

�B + 1�


�>���>  

> 8�3�m + 1�
 − 3�m + 1� + 1��m + 1�
  

− 128m

�m + 1�


�2m − 1�,
16�8m, − 20m
 + 14m − 11� 

= *+�;>G�
=>H��;><��!>-��I>���.
�>���-�*><�
!>-��=>����            (6) 

Thanks to (6), we have 

�>���> − 16�8�B + 1�, − 20�B + 1�
 + 14�B + 1� − 11��2�B + 1� − 1�,  

> 8�16BJ − 24B= − 16B, − 10B
 − 19B − 11��B + 1�
�8B, − 20B
 + 14B − 11�  

− 16�8�B + 1�, − 20�B + 1�
 + 14�B + 1� − 11��2�B + 1� − 1�,  

= *+,
>L�*!>G�,*=>H�=**><�
J=>-�
M,>�
!I.
�>���-�*><�
!>-��=>�����
>���< > 0. (7) 

Inequality (5) follows from (7). Therefore, Lemma 2.1 is 

proved by induction. The proof is complete. 

We are now in a position to establish an upper bound for 0�0�42. 
Lemma 2.2. For n ≥0, we have 

0�0�42 < 9�� + 1�，             (8) 

where  9��� is defined by (3). 

Proof. We also prove Lemma 2.2 by induction on n. It is 

easy to verify that (8) is true when n = 7. Assume that Lemma 

2.2 holds when n = m ≥7, namely, 

0?0?42 < �;+*�>���<�
!�>���-��=�>������.
�
�>������< .   (9) 

In order to prove (8), it suffices to prove that (8) is true 

when n = m + 1, that is, 

0?120? < �;+*�>�
�<�
!�>�
�-��=�>�
����.
�
�>�
����<      (10) 

It follows from (1) and (9) that 

�>���> = 8�3�B + 1�
 − 3�B + 1� + 1��B + 1�
 − 128B

�B + 1�


�>���>  

< 8�3�B + 1�
 − 3�B + 1� + 1��B + 1�
  

− 128B

�B + 1�


�2�B + 1� − 1�,
16�8�B + 1�, − 20�B + 1�
 + 14�B + 1� − 11� 

= *+�;>G�
=>H�*><�,!>-�
I>�I.
�>���-�*><�=>-�
>�I� .       (11) 

Therefore, by (11), we deduce that 

�>���> − 16�8�B + 2�, − 20�B + 2�
 + 14�B + 2� − 11��2�B + 2� − 1�,  

< 8�16BJ + 24B= + 8B, − 30B
 − 29B − 9��B + 1�
�8B, + 4B
 − 2B − 9�  

− 16�8�B + 2�, − 20�B + 2�
 + 14�B + 2� − 11��2�B + 2� − 1�,  

= − *+,
>L�*!>G�
**>H�M==><�IM*>-�;*I>�

J.
�>���-�*><�=>-�
>�I��
>�,�< < 0. (12) 

Inequality (5) follows from (12) and Lemma 2.2 is proved 

by induction. This completes the proof. 

3. Proof of Conjecture 1.1 

In this section, we provide a proof of Conjecture 1.1 by 

utilizing the lower and upper bounds for 
0�0�42 established in 

Section 2. We first prove the following lemma: 

Lemma 3.1. For n ≥7, 

N1 − 

�-���
O�-���
 ≥ N1 − �


IOJ*
        (13) 

Proof. It is easy to see that for x > y >0, 

P��� − Q��� = �P − Q��P� + P���Q + ⋯ + PQ��� + Q�� >�� + 1��P − Q�Q� .                  (14) 

If we set P = 1 − 

���and Q = 1 − 


� in (14), then we get 
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�1 − 2� + 1���� − �1 − 2����� > 

�� + 1� N

� − 


���O N1 − 

�O� = 


� N1 − 

�O�.   (15) 

Therefore, it follows from (15) that 

�1 − 2� + 1���� > �1 − 2����� + 2� �1 − 2���
 

= N1 − 

� + 


�O N1 − 

�O� = N1 − 


�O�
       (16) 

Therefore, the sequence /N1 − 

�O�3��


	
is increasing. In 

particular, its subsequence  SN1 − 

 �-���
O�-���
T

��M
	

 is 

also increasing. Hence, for n ≥7, 

�1 − 2�
 + � + 2��-���
 ≥ �1 − 27
 + 7 + 2�M-�M�

 

= N1 − �

IOJ*.          (17) 

which is nothing but (17). The proof of this lemma is 

complete. 

We are now in a position to turn to prove Conjecture 1.1. 

Proof of Conjecture 1.1. It is easy to check that 

Conjecture 1.1 is true when 1≤ n≤ 6. Hence, we only need 

to consider the case n ≥ 7. By (2) and (8), we deduce that 

for n ≥ 7, 

N0�120� O��������
� > 9��������
��� + 1�        (18) 

0�120� < 9�� + 2� < 0�1-0�12 < 9�� + 3�         (19) 

and 

�*�M < 9�9� < �I�* < 9�10� < ⋯ 

< 0�0�42 < 9�� + 1� < 0�120� ,           (20) 

where f(n) is defined by (3). By (20), we see that for n ≥7, 

����
 = �M
 N0W0X
0Y0W ⋯ 0�0�42O
 0�12-

0�- ≤ �M
9
���=�� + 1� 0�12-
0�- . (21) 

In view of (19) and (21), we see that 

����
����������� ����
 < 9�������� + 3�����
  

< 9�-���� + 3��M
9
���=�� + 1� ����

��
  

< 9�-���
�� + 3��M
9
���=�� + 1�.      (22) 

It is easy to check that for n ≥7, 

9�� + 1�
9�� + 3� − �1 − 2�
 + � + 2� 

= 
+;=�G���
�H�JM;�<��II
�-�
�I;����
J.
�
����<�*�<�J
�-���!��;M���-���
� > 0.   (23) 

Based on (3.6), (3.10) and (3.11), we deduce that for n ≥7, 

           ������� ���������
� − ����
����������� ����
 > 9��������
��� + 1� − 9�-���
�� + 3��M
9
���=�� + 1� 

= 9
���=�� + 1�9�-���
�� + 3� Z�9�� + 1�
9�� + 3���-���
 9�=�� + 1� − �M
[ 

> 9
���=�� + 1�9�-���
�� + 3� �N1 − 

�-���
O�-���
 9�=�� + 1��M
�                   (24) 

By (13), (24) and the fact that f(7) < f(n + 1) for n ≥7, 

          ������� ���������
� − ����
����������� ����
 > 9
���=�� + 1�9�-���
�� + 3� ��1 − 129�J* 9�=�� + 1� − �M
� 

> 9
���=�� + 1�9�-���
�� + 3� �N1 − �

IOJ* 9�=�7� − �M
�                  (25) 

With Maple, it is easy to verify that 

   N1 − �

IOJ* 9�=�7� − �M
 > 0            (26) 

Combining (3.13) and (3.14) yields 

N0�120� O��������
� > N0�1-0�12O������ ����
        (27) 

Inequality (27) can be rewritten as 

����
�-�=� > ����������
����
������
 



98 Yang Wen:  On the Log-Concavity of the Root of the Catalan-Larcombe-French Numbers  

 

Therefore, 

+����
�-�=�. 2���12���1-� > +����������
����
������. 2���12���1-�
 

which yields 

����
-�12 > ��

2����

2�1- 

The above inequality can be rewritten as 

�0�12�12
�0�� > �0�1-�1-

�0�12�12              (28) 

It follows from (28) that the sequence � ���� ����
	

 is 

log-concave and the sequence � ������12 / ���� ����
	

 is strictly 

decreasing. This completes the proof of Conjecture 1.1. 

4. Conclusion 

The Catalan-Larcombe-French numbers play important 

roles in combinatorics and number theory. Many 

combinatorial properties and congruence properties for the 

Catalan-Larcombe-French numbers have been proved. In this 

paper, by establishing several inequalities for the 

Catalan-Larcombe-French numbers, we obtain the lower and 

upper bound for the quotient 
0�0�42  and prove that the nth Root 

of the Catalan-Larcombe-French Numbers are log-concave, 

which confirm a conjecture given by Sun. 
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