American Journal of Mathematical and Computer Modelling 2017; 2(4): 95-98 http://www.sciencepublishinggroup.com/j/ajmcm doi: 10.11648/j.ajmcm.20170204.11

On the Log-Concavity of the Root of the Catalan-Larcombe-French Numbers

Yang Wen

Department of Automobile Engineering and Transport, Lanzhou Vocational Technical College, Lanzhou, P. R. China

Email address:

wen1982yang@gmail.com

To cite this article:

Yang Wen. On the Log-Concavity of the Root of the Catalan-Larcombe-French Numbers. *American Journal of Mathematical and Computer Modelling*. Vol. 2, No. 4, 2017, pp. 95-98. doi: 10.11648/j.ajmcm.20170204.11

Received: October 29, 2016; Accepted: March 31, 2017; Published: April 17, 2017

Abstract: Recently, some combinatorial properties for the the Catalan-Larcombe-French numbers have been proved by Sun and Wu, and Zhao. Recently, Z. W. Sun conjectured that the root of the Catalan-Larcombe-French numbers is log-concave. In this paper, we confirm Sun's conjecture by establishing the lower and upper bound for the ratios of the Catalan-Larcombe-French numbers.

Keywords: The Catalan-Larcombe-French Number, Log-Concavity, Recurrence Relation

1. Introduction

The aim of this paper is to prove the log-concavity of $\left\{\sqrt[n]{P_n}\right\}_{n=1}^{\infty}$, where P_n is the *n*-th Catalan-Larcombe-French number. This confirms a conjecture given by Zhi Wei Sun [8].

Recall that an infinite sequence a_n is said to be log-concave if for $n \ge 1$,

$$a_n^2 \ge a_{n-1}a_{n+1}$$

The Catalan-Larcombe-French numbers P_n were first defined by Catalan in terms of the "Segner numbers". The *n*-th Catalan-Larcombe-French number is generated by either of the finite sums

$$P_n = 2^n \sum_{p=0}^{\lfloor n/2 \rfloor} (-4)^p \binom{2(n-p)}{n-p}^2 \binom{n-p}{p}, n \ge 0$$

(where the function [x], for arbitrary x real, is the greatest integer not exceeding x) or

$$P_n = \frac{1}{n!} \sum_{p+q=n} {\binom{2p}{p} \binom{2q}{q}} \frac{(2p)! (2q)!}{p! \, q!}, n \ge 0$$

The infinite sequence $\{P_n\}_{n=0}^{\infty}$ is known as the Catalan-Larcombe-French sequence (Sequence No. A053175 in Sloane's database [7]). These numbers occur in the theory of elliptic integrals, and there are relations to the arithmetic-geometric-mean. Furthermore, the sequence

satisfies the following recurrence relation:

$$P_n = \frac{8(3n^2 - 3n + 1)}{n^2} P_{n-1} - \frac{128(n-1)^2}{n^2} P_{n-2}$$
(1)

for $n \ge 2$, with the initial values given by $P_0 = 1$ and $P_1 = 8$. For more details, see [1-6].

The combinatorial properties for the Catalan-Larcombe-French sequence have been considered. The log-behavior of the Catalan-Larcombe-French sequence was studied by Zhao [12]. Moreover, she proved that the sequence $\{P_n\}_{n=0}^{\infty}$ is log-balanced. Xia and Yao [11] proved that the sequences $\left\{\frac{P_{n+1}}{P_n}\right\}_{n=0}^{\infty}$ and $\left\{\sqrt[n]{P_n}\right\}_{n=0}^{\infty}$ are strictly increasing. The 2-log-convexity of the sequence $\{P_n\}_{n=0}^{\infty}$ was proved by Sun and Wu [8]. Furthermore, Sun and Jin [9] proved the log-concavity for the sequence $\left\{\frac{P_n}{P_{n-1}}\right\}_{n=1}^{\infty}$, which confirmed a conjecture due to Sun and Wu [8].

Recently, Sun [10] posed the following conjecture:

Conjecture 1.1. The sequence $\{\sqrt[n]{P_n}\}_{n=1}^{\infty}$ is log-concave. Moreover, the sequence $\{\sqrt[n+1]{P_{n+1}}/\sqrt[n]{P_n}\}_{n=1}^{\infty}$ is strictly decreasing.

In this paper, we will establish lower and upper bounds for $\frac{P_n}{P_{n-1}}$ by utilizing the recurrence relation of P_n and then present a proof of Conjecture 1.1.

2. Lower and Upper Bounds for $\frac{P_n}{P_{n-1}}$

In order to prove Conjecture 1.1, we need to prove several inequalities for The Catalan-Larcombe-French numbers P_n and establish lower and upper bounds for $\frac{P_n}{P_{n-1}}$. We first establish a lower bound for $\frac{P_n}{P_{n-1}}$.

Lemma 2.1. For $n \ge 7$, we have

$$f(n) < \frac{P_n}{P_{n-1}} \tag{2}$$

where

$$f(n) = \frac{16(8n^3 - 20n^2 + 14n - 11)}{(2n - 1)^3}$$
(3)

Proof. We are ready to prove Lemma 2.1 by induction on *n*. It is easy to check that Inequality (2) is true when n = 7. Suppose that Lemma 2.1 holds when $n = m \ge 7$, namely,

$$\frac{16(8m^3 - 20m^2 + 14m - 11)}{(2m - 1)^3} < \frac{P_m}{P_{m-1}} \tag{4}$$

In order to prove this lemma, we need to prove that (2) holds when n = m+1, that is,

$$\frac{16\left(8(m+1)^3 - 20(m+1)^2 + 14(m+1) - 11\right)}{(2(m+1)-1)^3} < \frac{P_{m+1}}{P_m}$$
(5)

Thanks to (1) and (4), we deduce that

$$\frac{P_{m+1}}{P_m} = \frac{8(3(m+1)^2 - 3(m+1) + 1)}{(m+1)^2} - \frac{128m^2}{(m+1)^2} \frac{P_{m-1}}{P_m}$$

$$> \frac{8(3(m+1)^2 - 3(m+1) + 1)}{(m+1)^2}$$

$$- \frac{128m^2}{(m+1)^2} \frac{(2m-1)^3}{16(8m^3 - 20m^2 + 14m - 11)}$$

$$= \frac{8(16m^5 - 24m^4 - 16m^3 - 10m^2 - 19m - 11)}{(m+1)^2(8m^3 - 20m^2 + 14m - 11)}$$
(6)

Thanks to (6), we have

$$\frac{P_{m+1}}{P_m} - \frac{16(8(m+1)^3 - 20(m+1)^2 + 14(m+1) - 11)}{(2(m+1) - 1)^3}$$

$$> \frac{8(16m^5 - 24m^4 - 16m^3 - 10m^2 - 19m - 11)}{(m+1)^2(8m^3 - 20m^2 + 14m - 11)}$$

$$- \frac{16(8(m+1)^3 - 20(m+1)^2 + 14(m+1) - 11)}{(2(m+1) - 1)^3}$$

$$= \frac{8(32m^6 - 80m^5 - 384m^4 - 488m^3 - 254m^2 - 273m - 209)}{(m+1)^2(8m^3 - 20m^2 + 14m - 11)(2m+1)^3} > 0. (7)$$

Inequality (5) follows from (7). Therefore, Lemma 2.1 is proved by induction. The proof is complete.

We are now in a position to establish an upper bound for $\frac{P_n}{P_{n-1}}$.

Lemma 2.2. For $n \ge 0$, we have

$$\frac{P_n}{P_{n-1}} < f(n+1),$$
 (8)

where f(n) is defined by (3).

Proof. We also prove Lemma 2.2 by induction on *n*. It is easy to verify that (8) is true when n = 7. Assume that Lemma 2.2 holds when $n = m \ge 7$, namely,

$$\frac{P_m}{P_{m-1}} < \frac{16(8(m+1)^3 - 20(m+1)^2 + 14(m+1) - 11)}{(2(m+1) - 1)^3}.$$
 (9)

In order to prove (8), it suffices to prove that (8) is true when n = m + 1, that is,

$$\frac{P_{m+1}}{P_m} < \frac{16(8(m+2)^3 - 20(m+2)^2 + 14(m+2) - 11)}{(2(m+2) - 1)^3}$$
(10)

It follows from (1) and (9) that

$$\frac{P_{m+1}}{P_m} = \frac{8(3(m+1)^2 - 3(m+1) + 1)}{(m+1)^2} - \frac{128m^2}{(m+1)^2} \frac{P_{m-1}}{P_m}$$

$$< \frac{8(3(m+1)^2 - 3(m+1) + 1)}{(m+1)^2}$$

$$- \frac{128m^2}{(m+1)^2} \frac{(2(m+1) - 1)^3}{16(8(m+1)^3 - 20(m+1)^2 + 14(m+1) - 11))}$$

$$= \frac{8(16m^5 + 24m^4 + 8m^3 - 30m^2 - 29m - 9)}{(m+1)^2(8m^3 + 4m^2 - 2m - 9)}.$$
(11)

Therefore, by (11), we deduce that

$$\frac{P_{m+1}}{P_m} - \frac{16(8(m+2)^3 - 20(m+2)^2 + 14(m+2) - 11)}{(2(m+2) - 1)^3} < < \frac{8(16m^5 + 24m^4 + 8m^3 - 30m^2 - 29m - 9)}{(m+1)^2(8m^3 + 4m^2 - 2m - 9)} - \frac{16(8(m+2)^3 - 20(m+2)^2 + 14(m+2) - 11)}{(2(m+2) - 1)^3} = -\frac{8(32m^6 + 80m^5 + 288m^4 + 744m^3 + 978m^2 + 689m + 225)}{(m+1)^2(8m^3 + 4m^2 - 2m - 9)(2m+3)^3} < 0. (12)$$

Inequality (5) follows from (12) and Lemma 2.2 is proved by induction. This completes the proof.

3. Proof of Conjecture 1.1

In this section, we provide a proof of Conjecture 1.1 by utilizing the lower and upper bounds for $\frac{P_n}{P_{n-1}}$ established in Section 2. We first prove the following lemma:

Lemma 3.1. For $n \ge 7$,

$$\left(1 - \frac{2}{n^2 + n + 2}\right)^{n^2 + n + 2} \ge \left(1 - \frac{1}{29}\right)^{58} \tag{13}$$

Proof. It is easy to see that for x > y > 0,

$$x^{n+1} - y^{n+1} = (x - y)(x^n + x^{n-1}y + \dots + xy^{n-1} + y^n) > (n+1)(x - y)y^n.$$
 (14)

If we set
$$x = 1 - \frac{2}{n+1}$$
 and $y = 1 - \frac{2}{n}$ in (14), then we get

$$\left(1 - \frac{2}{n+1}\right)^{n+1} - \left(1 - \frac{2}{n}\right)^{n+1} > (n+1)\left(\frac{2}{n} - \frac{2}{n+1}\right)\left(1 - \frac{2}{n}\right)^n = \frac{2}{n}\left(1 - \frac{2}{n}\right)^n.$$
 (15)

Therefore, it follows from (15) that

$$\left(1 - \frac{2}{n+1}\right)^{n+1} > \left(1 - \frac{2}{n}\right)^{n+1} + \frac{2}{n}\left(1 - \frac{2}{n}\right)^n$$
$$= \left(1 - \frac{2}{n} + \frac{2}{n}\right)\left(1 - \frac{2}{n}\right)^n = \left(1 - \frac{2}{n}\right)^n \tag{16}$$

Therefore, the sequence $\left\{\left(1-\frac{2}{n}\right)^n\right\}_{n=2}^{\infty}$ is increasing. In particular, its subsequence $\left\{\left(1-\frac{2}{n^2+n+2}\right)^{n^2+n+2}\right\}_{n=7}^{\infty}$ is also increasing. Hence, for $n \ge 7$,

$$\left(1 - \frac{2}{n^2 + n + 2}\right)^{n^2 + n + 2} \ge \left(1 - \frac{2}{7^2 + 7 + 2}\right)^{7^2 + 7 + 2}$$
$$= \left(1 - \frac{1}{29}\right)^{58}.$$
 (17)

which is nothing but (17). The proof of this lemma is complete.

We are now in a position to turn to prove Conjecture 1.1.

Proof of Conjecture 1.1. It is easy to check that Conjecture 1.1 is true when $1 \le n \le 6$. Hence, we only need to consider the case $n \ge 7$. By (2) and (8), we deduce that for $n \ge 7$,

$$\left(\frac{P_{n+1}}{P_n}\right)^{(n+1)(n+2)} > f^{(n+1)(n+2)}(n+1)$$
(18)

$$\frac{P_{n+1}}{P_n} < f(n+2) < \frac{P_{n+2}}{P_{n+1}} < f(n+3)$$
(19)

and

$$\frac{P_8}{P_7} < f(9) < \frac{P_9}{P_8} < f(10) < \cdots$$
$$< \frac{P_n}{P_{n-1}} < f(n+1) < \frac{P_{n+1}}{P_n},$$
(20)

where f(n) is defined by (3). By (20), we see that for $n \ge 7$,

$$P_{n+1}^2 = P_7^2 \left(\frac{P_8}{P_7} \frac{P_9}{P_8} \cdots \frac{P_n}{P_{n-1}}\right)^2 \frac{P_{n+1}^2}{P_n^2} \le P_7^2 f^{2n-14} (n+1) \frac{P_{n+1}^2}{P_n^2}.$$
 (21)

In view of (19) and (21), we see that

$$\left(\frac{P_{n+2}}{P_{n+1}}\right)^{n(n+1)} P_{n+1}^2 < f^{n(n+1)}(n+3)P_{n+1}^2$$

$$< f^{n^2+n}(n+3)P_7^2 f^{2n-14}(n+1)\frac{P_{n+1}^2}{P_n^2}$$

$$< f^{n^2+n+2}(n+3)P_7^2 f^{2n-14}(n+1).$$
(22)

It is easy to check that for $n \ge 7$,

$$\frac{f(n+1)}{f(n+3)} - \left(1 - \frac{2}{n^2 + n + 2}\right)$$
$$= \frac{2(64n^5 + 112n^4 - 576n^3 - 1992n^2 - 2196n - 1125)}{(2n+1)^3(8n^3 + 52n^2 + 110n + 67)(n^2 + n + 2)} > 0.$$
(23)

Based on (3.6), (3.10) and (3.11), we deduce that for $n \ge 7$,

$$\left(\frac{P_{n+1}}{P_n}\right)^{(n+1)(n+2)} - \left(\frac{P_{n+2}}{P_{n+1}}\right)^{n(n+1)} P_{n+1}^2 > f^{(n+1)(n+2)}(n+1) - f^{n^2+n+2}(n+3)P_7^2 f^{2n-14}(n+1)$$

$$= f^{2n-14}(n+1)f^{n^2+n+2}(n+3) \left(\left(\frac{f(n+1)}{f(n+3)}\right)^{n^2+n+2} f^{14}(n+1) - P_7^2\right)$$

$$> f^{2n-14}(n+1)f^{n^2+n+2}(n+3) \left(\left(1 - \frac{2}{n^2+n+2}\right)^{n^2+n+2} f^{14}(n+1)P_7^2\right)$$

$$(24)$$

By (13), (24) and the fact that f(7) < f(n+1) for $n \ge 7$,

$$\left(\frac{P_{n+1}}{P_n}\right)^{(n+1)(n+2)} - \left(\frac{P_{n+2}}{P_{n+1}}\right)^{n(n+1)} P_{n+1}^2 > f^{2n-14}(n+1)f^{n^2+n+2}(n+3)\left(\left(1-\frac{1}{29}\right)^{58}f^{14}(n+1) - P_7^2\right) > f^{2n-14}(n+1)f^{n^2+n+2}(n+3)\left(\left(1-\frac{1}{29}\right)^{58}f^{14}(7) - P_7^2\right)$$
(25)

With Maple, it is easy to verify that

$$\left(1 - \frac{1}{29}\right)^{58} f^{14}(7) - P_7^2 > 0 \tag{26}$$

 $\left(\frac{P_{n+1}}{P_n}\right)^{(n+1)(n+2)} > \left(\frac{P_{n+2}}{P_{n+1}}\right)^{n(n+1)} P_{n+1}^2$ Inequality (27) can be rewritten as

Combining (3.13) and (3.14) yields

$$P_{n+1}^{2n^2+4n} > P_n^{(n+1)(n+2)} P_{n+2}^{n(n+1)}$$

(27)

Therefore,

$$\left(P_{n+1}^{2n^2+4n}\right)^{\frac{1}{n(n+1)(n+2)}} > \left(P_n^{(n+1)(n+2)}P_{n+2}^{n(n+1)}\right)^{\frac{1}{n(n+1)(n+2)}}$$

which yields

$$P_{n+1}^{\frac{2}{n+1}} > P_n^{\frac{1}{n}} P_{n+2}^{\frac{1}{n+2}}$$

The above inequality can be rewritten as

$$\frac{n+1\sqrt{p_{n+1}}}{n\sqrt{p_n}} > \frac{n+2\sqrt{p_{n+2}}}{n+1\sqrt{p_{n+1}}}$$
(28)

It follows from (28) that the sequence $\left\{\sqrt[n]{P_n}\right\}_{n=1}^{\infty}$ is log-concave and the sequence $\left\{\frac{n+1}{\sqrt{P_{n+1}}}/\frac{n}{\sqrt{P_n}}\right\}_{n=1}^{\infty}$ is strictly decreasing. This completes the proof of Conjecture 1.1.

4. Conclusion

The Catalan-Larcombe-French numbers play important roles in combinatorics and number theory. Many combinatorial properties and congruence properties for the Catalan-Larcombe-French numbers have been proved. In this paper, by establishing several inequalities for the Catalan-Larcombe-French numbers, we obtain the lower and upper bound for the quotient $\frac{P_n}{P_{n-1}}$ and prove that the *n*th Root of the Catalan-Larcombe-French Numbers are log-concave, which confirm a conjecture given by Sun.

Acknowledgements

I wish to thank the referee for comments and suggestions which have resulted in an improved version of the paper.

References

 A. F. Jarvis, P. J. Larcombe and D. R. French, Linear recurrences between tworecent integer sequences, Congr. Numer. 169 (2004) 79-99.

- [2] P. Larcombe and D. R. French, On the `other' Catalan numbers: a historical formulation re-examined, Congr. Numer. 143 (2000) 33-64.
- [3] P. Larcombe and D. R. French, On the integrality of the Catalan-Larcombe-French sequence {1, 8, 80, 896, 10816,...}, Cong. Num. 148 (2001) 65-91.
- [4] P. Larcombe and D. R. French, A new generating function for the Catalan-Larcombe-French sequence: proof of a result by Jovovic, Cong. Num. 166 (2004)161-172.
- [5] P. Larcombe, D. R. French and E. J. Fennessey, The asymptotic behaviour of the Catalan-Larcombe-French sequence {1, 8, 80, 896, 10816,...}, Util. Math. 60 (2001) 67-77.
- [6] P. Larcombe, D. R. French and C. A. Woodham, A note on the asymptotic behaviour of a prime factor decomposition of the general Catalan-Larcombe-Frenchnumber, Cong. Num. 156 (2002) 17-25.
- [7] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at www.research.att.com/vjas/sequences/.
- [8] B. Y. Sun and B. Wu, Two-log-convexity of the Catalan-Larcombe-French sequence, J. Ineq. Appl. 2015 (2015) # P404.
- [9] M. R. Sun and L. J. Jin, Proof of a conjecture on the Catalan-Larcombe-Frenchnumbers, Ars Combin., to appear.
- [10] Z. W. Sun, Conjectures involving arithmetical sequences, Numbers Theory: Arithmetic in Shangri-La (eds., S. Kanemitsu, H. Li and J. Liu), Proc. 6thChina-Japan Seminar (Shanghai, August 15-17, 2011), World Sci., Singapore, 2013, pp. 244-258.
- [11] E. X. W. Xia and O. X. M. Yao, A criterion for the log-convexity of combinatorial sequences, Electr. J. Combin. 20 (4) (2014) # P3.
- [12] F. Z. Zhao, The log-behavior of the Catalan-Larcombe-French sequences, Int. J. Number Theory 10 (2014) 177-182.