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Abstract: Recently, some combinatorial properties for the the Catalan-Larcombe-French numbers have been proved by Sun
and Wu, and Zhao. Recently, Z. W. Sun conjectured that the root of the Catalan-Larcombe-French numbers is log-concave. In
this paper, we confirm Sun's conjecture by establishing the lower and upper bound for the ratios of the Catalan-Larcombe-French

numbers.
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1. Introduction

The aim of this paper is to prove the log-concavity of
{%}nﬂ’ where P, is the n-th Catalan-Larcombe-French

number. This confirms a conjecture given by Zhi Wei Sun [8].
Recall that an infinite sequence a, is said to be
log-concave if for n>1,

2
an = An-10n+1

The Catalan-Larcombe-French numbers Prn were first
defined by Catalan in terms of the “Segner numbers”. The n-th
Catalan-Larcombe-French number is generated by either of
the finite sums

[n/2] 2( ) 2
n— n—
Pn=2"2(—4)”< p)( p),nZO
— n-—p p
p=0
(where the function [x], for arbitrary x real, is the greatest
integer not exceeding x) or

ne 2 ()G =

p+q=n

The infinite sequence {P,};-o is known as the
Catalan-Larcombe-French sequence (Sequence No. A053175
in Sloane's database [7]). These numbers occur in the theory of
elliptic integrals, and there are relations to the
arithmetic-geometric-mean. Furthermore, the sequence

satisfies the following recurrence relation:

_ 8(3n%2-3n+1)

n2

128(n—1)>2
n2

P, Py — Py (1)
for n=2, with the initial values given by P0= 1 and P1= 8. For
more details, see [1-6].

The combinatorial properties for the
Catalan-Larcombe-French sequence have been considered.
The log-behavior of the Catalan-Larcombe-French sequence
was studied by Zhao [12]. Moreover, she proved that the
sequence {P,}n-ois log-balanced. Xia and Yao [11] proved

Pnt1)” n *® .
that the sequences { P }n=0 and {‘/F"}n:o are strictly
increasing. The 2-log-convexity of the sequence {B,}n-o was
proved by Sun and Wu [8]. Furthermore, Sun and Jin [9]
proved the log-concavity for the sequence {PPnl} , which

n-1"n=1
confirmed a conjecture due to Sun and Wu [8].
Recently, Sun [10] posed the following conjecture:

Conjecture 1.1. The sequence {%}::1 is log-concave.

(o]
Moreover, the sequence {"H,/PnJrl/n,/Pn}n_1 is strictly

decreasing.

In this paper, we will establish lower and upper bounds for
Pn

by utilizing the recurrence relation of P and then present
n-1

a proof of Conjecture 1.1.
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2. Lower and Upper Bounds for

n—-1

In order to prove Conjecture 1.1, we need to prove several
inequalities for The Catalan-Larcombe-French numbers Pn

and establish lower and upper bounds for Pn We first
n-1
establish a lower bound for PP" :
n-1
Lemma 2.1. For n =7, we have
Pn
f) <- ©)
n-1
where
3_ 2 _
fn) = 16(8n3-20n2+14n-11) 3)

(2n-1)3

Proof. We are ready to prove Lemma 2.1 by induction on #.
It is easy to check that Inequality (2) is true when n = 7.
Suppose that Lemma 2.1 holds when n = m=7, namely,

16(8m®-20m?+14m-11) Pm
(2m-1)3

“4)

Pm—1

In order to prove this lemma, we need to prove that (2)
holds when n = m+ 1, that is,

16(8(m+1)3-20(m+1)?+14(m+1)-11) < Pmia

2(m+1)-1)3 P ®)
Thanks to (1) and (4), we deduce that
Ppy1 8B3(Mm+1)?-3(m+1)+1) 128m? P,_,
P, (m+ 1)2 (m+1)% P,
S 8B(m+1)2-3m+1)+1)
(m + 1)?
128m? (2m-1)3
(m +1)216(8m3® — 20m? + 14m — 11)
_ 8(16m°-24m*-16m*-10m?-19m-11) ©6)

(m+1)2(8m3-20m2+14m—11)
Thanks to (6), we have

Phii 16(8(m+1)2-200m+1)2+14(m+1) —11)
P, Q2m+1)—1)3

8(16m° — 24m* — 16m3 — 10m? — 19m — 11)
(m+ 1)2(8m3 — 20m? + 14m — 11)

16(8(m +1)> —20(m + 1)+ 14(m + 1) — 11)
B Q2(m+1)-1)3

_ 8(32m®-80m°-384m*-488m>-254m2—273m—209)
- (m+1)2(8m3-20m2+14m—11)(2m+1)3

> 0. (7)

Inequality (5) follows from (7). Therefore, Lemma 2.1 is
proved by induction. The proof is complete.

We are now in a position to establish an upper bound for
Pn

Pn_y’
Lemma 2.2. For n =0, we have

utilizing the lower and upper bounds for
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Pn

<f+1), @®)
Ppn—q
where f(n) is defined by (3).
Proof. We also prove Lemma 2.2 by induction on #. It is
easy to verify that (8) is true when n = 7. Assume that Lemma
2.2 holds when n =m =7, namely,

Pm 16(8(m+1)%3-20(m+1)2+14(m+1)-11)
< .
2(m+1)-1)3

©)

Pm—1

In order to prove (8), it suffices to prove that (8) is true
when n=m + 1, that is,

Pmi 16(8(m+2)%-20(m+2)2+14(m+2)-11)
Pm (2(m+2)-1)3

(10)
It follows from (1) and (9) that
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(m+1)2(8m3+4m2-2m-9)

1n
Therefore, by (11), we deduce that

Poir 16(8(m+2)2—20(m+2)2+14(m+2) —11)
P, 2(m+2)—1)3

8(16m°> + 24m* + 8m3 — 30m? — 29m — 9)
(m+1)?2(8m3 +4m? —2m —9)
16(8(m + 2)3 — 20(m + 2)% + 14(m + 2) — 11)
Qmm+2) —1)°

8(32m°®+80m°+288m*+744m3+978m?+689m+225
= ) < 0. (12)

(m+1)2(8m3+4m2-2m-9)(2m+3)3

Inequality (5) follows from (12) and Lemma 2.2 is proved

by induction. This completes the proof.

3. Proof of Conjecture 1.1

In this section, we provide a proof of Conjecture 1.1 by
n_ established in

n-1
Section 2. We first prove the following lemma:
Lemma 3.1. Forn =7,

(- "2 (-8 o

Proof. 1t is easy to see that for x >y >0,

xn+1 _ yn+1 — (x _ y)(xn + xn—ly + o F xyn—l + yn) >
(n+ D —yy™ (14)

2 2.
Ifweset x =1 —mand y=1 —;1n(14), then we get
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n+1

(1 2 >n+1 (1 2 S
1) (3

e+ (-5 (-2 =202 a9
Therefore, it follows from (15) that
2 n+1 2 n+1 2 2 n
)02 203
n+1 n n n
-3 -0 w

[oe]

2 n
Therefore, the sequence {(1—;) } is increasing. In
n=2

2 [oe]
2 nc+n+2 .
1S
n2+n+2>
n=7

particular, its subsequence {(1 -

also increasing. Hence, for n >7,

2 n24+n+2 2 724742

[ >(1-——
( n2+n+2> _( 72+7+2)

1158
=(1-%)"
which is nothing but (17). The proof of this lemma is
complete.
We are now in a position to turn to prove Conjecture 1.1.
Proof of Conjecture 1.1. It is easy to check that
Conjecture 1.1 is true when 1< n< 6. Hence, we only need

to consider the case n = 7. By (2) and (8), we deduce that
forn = 7,

a7

(P2+1>(n+1)(n+2) > f(n+1)(n+2)(n +1)
n

(18)

(n+1)(n+2) nn+1)

— f2n—14(n + l)fn2+n+2(n +3) ((

Bt o 4+ 2) <22 < f(n 4+ 3) (19)
P Pnyq
and
Ps (9) < il (10) <
Pn Pnyq
<< fm+1) <l (20)
Pp—1 P

where f(n) is defined by (3). By (20), we see that for n =7,

2 2 (Pg Po Py \? P2ys 2 £2n-14 P21
Pi,=P; (—— ) =< Psf (n+ 122 2D
P;Pg  Pp_q Py Py

In view of (19) and (21), we see that
(Pn+2)
Pn+1

<+ 3)PZ 1 (n + 1)

n(n+1)
P2, < fr+D(n +3)PZ,,

Pin
B
< frEER2(n 4 3)P2FA14(n 4 1), (22)

It is easy to check that for n >7,
fn+1) (1 2 )
f(n+3) n?+n+2

_ 2(64n°+112n*-576n%-1992n?-2196n—-1125)
(2n+1)3(8n3+52n2+110n+67)(n%+n+2)

Based on (3.6), (3.10) and (3.11), we deduce that for n =7,

> 0.

(23)

P73+1 > f(n+1)(n+2)(n +1) - fn2+n+2(n + 3)P72f2"_14(n +1)

1 n?+n+2

> prtsua D4 3) ((1- o2 ) 7 e D2 (24)
n2+n+2 7
By (13), (24) and the fact that {7) < fin + 1) forn =7,
P 1 n+1)(n+2) P 2 n(n+1) ) 1 58
( = ) - ( = ) PZ, > f2 1 (n 4+ 1)f™ 1+ 2(n + 3) (1 ——) f*(n+1) - P?
B, Ppiq 29
58
> i+ e 3) ((1-5) 7 40 - p2) (25)
With Maple, it is easy to verify that b\ D(n42) b (D)
n+1 n+2 2
(%2) >(G2) R e

(1- i)58f14(7) —P2>0

29

(26)

Combining (3.13) and (3.14) yields

Inequality (27) can be rewritten as

P€2i+4n > Pn(n+1)(n+2)P;_£;l+1)
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Therefore,

1 1
2n?+4n\n(n+ D) (n+2) Mm+1)(n+2) pn(n+1)\nm+Dn+2)
(Pn+1 )n " " > (Pn Pn+2 )

which yields
2 R
+1 +2
P‘r:l+1 > P‘r:ann+2

The above inequality can be rewritten as

71+1(Pn+1 = 71+2(Pn+2 28
Ven T ifPun (28)

It follows from (28) that the sequence {’i/?n}:zl is

log-concave and the sequence {"+,1/ Poi1/ T{/Fn}:;l is strictly
decreasing. This completes the proof of Conjecture 1.1.

4. Conclusion

The Catalan-Larcombe-French numbers play important
roles in combinatorics and number theory. Many
combinatorial properties and congruence properties for the
Catalan-Larcombe-French numbers have been proved. In this
paper, by establishing several inequalities for the
Catalan-Larcombe-French numbers, we obtain the lower and

P
™~ and prove that the nth Root

upper bound for the quotient >
n-1

of the Catalan-Larcombe-French Numbers are log-concave,
which confirm a conjecture given by Sun.
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