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Abstract: Susceptible, Infected and Resistant (SIR) models are used to observe the spread of infection from infected 

populations into healthy populations. Stability analysis of the model is done using the Routh-Hurwitz criteria, basic 

reproduction number or the Lyapunov Stability. For stability analysis, parameters value are needed and these values are usually 

assumed. Given data cannot be used to determine the parameter values of SIR model because analytic solution of system of 

nonlinear differential equation cannot be determined. In this article, we determine the parameters of the exponential growth 

model, logistic model and SIR models using the Particle Swarm Optimization (PSO) algorithm. The SIR model is solved 

numerically using the Euler method based on the parameter values determined by PSO. The simulation results show that the 

PSO algorithm is good enough in determining the parameters of the three models compared to analytical methods and the 

Gauss-Newton’s method. Based on the average hypothesis test the relative error obtained from the PSO algorithm to determine 

the parameters is less than 3% with a significance level of 1%. 
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1. Introduction 

Mathematical models can be interpreted as mathematical 

equations that explain behavior in the real world. This 

equation is formed by transforming the form of events in the 

community into variables or parameters. The mathematical 

model that is quite widely used is the model in the form of 

differential equations. For example, the model of motion, 

whether it is a spring, pendulum or aircraft maneuver, is 

expressed in a system of ordinary differential equations. In 

addition, the disease spread model better known as the 

Susceptible, Infected, Resistant (SIR) model is also 

expressed in the ordinary differential equation system. The 

SIR model is very widely used to analyze the spread of 

diseases in the human environment such as the ebola virus 

[1], zika [2], malaria [3], diabetes [4]. Not only diseases that 

attack physically, but diseases that are bad habits can also be 

analyzed with the SIR model. Mu'tamar [5] developes a SIR 

model to analyze the spread of habits of consuming alcoholic 

beverages as well as implemented the optimum control for 

treatment measures. In addition to the human environment, 

the SIR model can also be used to analyze the spread of 

viruses in a computer environment [6]. If this mathematical 

model is combined with data, then mathematics can be an 

excellent tool for environmental observation and the basis for 

policy making. Unfortunately, to process data and 

mathematical models in the form of ordinary differential 

equations is not easy. This is because the process uses the 

curve fitting which has so far only been carried out on 

functions that have an explicit form. It is difficult to do in the 

SIR model because this model cannot be solved analytically 

so the solution of the equation in the explicit form cannot be 

determined. 

Kennedy and Eberhart [7] introduced a search method 

called Particle Swarm Optimization. This method was 

developed from the behavior of herd animals such as bees 

and ants in finding food locations. This method does not 

require complex mathematical theories such as Jacobian or 

Hessian in determining the solution or the maximum of a 

system of nonlinear equations. Therefore, its usege is very 

broad, especially in the field of control. Naiborhu et. al. [9] 

use PSO to determine an alternative path when the exact 
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linearization method failed to determine the control of a 

nonlinear system due to discontinuity. Mu'tamar and 

Naiborhu [10] use PSO and is combined with fuzzy logic to 

determine the weighting matrix of the LQR control which is 

applied to the track control system. Hasni et. al. [11] use PSO 

to determine parameters in the GreenHouse climate model 

and compared with genetic algorithms. Jalilvand et. al. [12] 

use PSO and modify the aspect of random numbers using 

position and PersonalBest ratios so as to speed up the process 

of finding a solution. Chiu et. al. [13] applies PSO to 

determine parameters in the antenna array so that signal noise 

can be minimized. Solihin and Akmeliawati [14] utilizes PSO 

to determine the optimum control parameters which are 

applied to the inverted pendulum linear form. 

It should be emphasized here, in other studies that have 

been done before, the parameters to be determined using PSO 

are parameters of functions or functions that are explicitly 

available. The GreenHouse model in [11] uses a 

mathematical model where explicit solutions are available so 

that the fitness value can be calculated easily. Whereas in this 

study, the parameter determined value is the parameter of the 

mathematical model whose solution is not available using 

analytical methods. However, the results of determining the 

parameters of the SIR epidemic model using PSO indicate 

that the PSO algorithm has succeeded in finding the origin 

parameters with very low error rates. Based on the average 

hypothesis test the relative error obtained from the PSO 

algorithm to determine the parameters is less than 3% with a 

significance level of 1%. 

2. Material and Methods 

The method used in this research is the study of literature, 

which develops previous research. Because the parameter 

estimation method in dynamic systems has not been done in 

previous studies, this research will be carried out on a 

simple model that is an exponential and logistic growth 

model. Furthermore, the method will be applied to the 

Susceptible, Infected and Resistant (SIR) epidemic models. 

The work steps in this research are (1) determining the data 

to be used as work materials whose characteristics meet the 

exponential and logistical models, (2) determining the 

analytical solutions of the exponential and logistical models. 

Both of these models involve two parameters of unknown 

value, (3) determining the numerical solution of the 

logistical model and the SIR epidemic model. The logistic 

model has again determined its numerical solution for the 

comparative test of the success of the PSO method in 

determining parameters, (4) determining the parameter 

values of each model where the PSO method is used for the 

whole model, the linear curve fitting method for 

exponential and logistic models, while the Gauss-Newton’s 

method only for exponential models, (5) comparing data 

and function results based on the generated parameter 

values, (6) specifically for the SIR epidemic model, the data 

obtained by simulation with predetermined parameter 

values. Therefore, a hypothesis test is performed to see 

whether the resulting parameter gives a small error value 

compared to the proposed hypothesis value 

Furthermore, some definitions and theories related to this 

research are presented in the following discussion. 

2.1. Linear Function Curve Fitting 

Lets given n pairs of data ( , )i it d  for 1, 2, ,i n= … and 

select the overlay function for that data, 0 1( )f t a a t= +  with 

0 1,a a R∈  and 1 0.a ≠  Defines an error between the data and 

the approximation function 

2
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The system of equations (3) can be expressed in a linear 

system of equations Ax b= with * *
0 1x ( , )Ta a=  and 
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2.2. Particle Swarm Optimization (PSO) 

Particle Swarm Optimization (PSO) is a heuristic method 

used to determine the goal function solution based on the 



 American Journal of Mathematical and Computer Modelling 2019; 4(4): 83-93 85 

 

behavior of ant or bee herds developed by Kennedy and 

Eberhart [7]. The goal function solution is the swarm position 

calculated by the equation 

1 1x x vi i i
k k k+ += +                                 (6) 

where V is the speed of swarm motion expressed in the 

equation 

1 1 2v v (Pb x ) (Gb x )i i i i i i
k k k k k kc cγ γ+ = + − + −            (7) 

The definitions of the symbols in equations (6), (7) are 

given in Table 1. 

Table 1. The Symbols of equation (6) and (7). 

Symbol Description 

xi
k  Swarm position 

vi
k  Swarm velocity 

1 2,c c  

Individual and social cognitive swarm, a number that 

expresses the level of swarm's ability to determine solutions 

and the ability to develop with the herd. The best value 

based on research is 1 2 4.c c+ ≤  [8] 

γ  Computer generated random numbers 

Pb  PersonalBest, the best solution of swarm position 

Gb  
GlobalBest, the best solution for all swarms from all 

iterations 

2.3. The Susceptible, Infected and Resistant (SIR) Epidemic 

Model 

The SIR epidemic model is a mathematical model in the 

form of a system of ordinary differential equations that is 

used to describe the spread of disease from infected 

individuals. The SIR epidemic model is expressed in 

equations 

'( ) ( ) ( )

'( ) ( ) ( ) ( )

'( ) ( )

s t s t i t

i t s t i t i t

r t i t

α
α β
β

= − 
= − 
= 

                   (8) 

with ( ), ( ), ( ) 0s t i t r t ≥  and ( ) ( ) ( ) 1s t i t r t+ + =  for each time 

t. The variables and parameters in equation (8) are described 

in Table 2. 

Table 2. The Parameters and variables in equation (8). 

Symbol Description 

( )s t  Number of individuals who are healthy and susceptible to 
contracting the disease at time t 

( )i t  Number of individuals who contracted the disease and can 

transmit the disease at time t 

( )s t  
The number of individuals who have contracted the disease 

and recovered from the disease and are assumed not to 

contract the disease again at time t 

α 

The rate of disease infection by affected populations in 

healthy populations due to the interaction of both, with 

0.α >  

β 
The rate of healing from diseases that are proportionately 

infected in individuals, with 0.β >  

 

2.4. Gauss-Newton’s Method 

Given system of nonlinear equations, y (x).f= The value 

xe  is the root of the system of nonlinear equation if it 

satisfies (x ) 0.ef =  To determine the solution of system of 

nonlinear equations, Gauss-Newton's method can be used, 

where is given by 

1
1x x J (x ) (x )n n n nf−

+ = −                       (9) 

where 0x  is the initial guess and J is the Jacobian matrix of 

the system of nonlinear equation, i.e 

1 1 1

1 2

2 2 2

1 2

1 2

J

n

n

n n n

n

f f f

x x x

f f f

x x x

f f f

x x x

∂ ∂ ∂ 
 ∂ ∂ ∂ 
 ∂ ∂ ∂
 ∂ ∂ ∂=  
 
 

∂ ∂ ∂ 
 ∂ ∂ ∂ 

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 

2.5. Euler Method for Ordinary Differential Equation 

Systems 

For example, given a first order and autonomous ordinary 

differential equation system, y ' ( , y)f t=  with initial value 

0y y( 0)t= =  defined at intervals [0, ].fI t∈  

The Euler method for solving numerical solutions of 

systems of ordinary differential equations is given by 

1y y ( , y), 0,1, 2, ,n n hf t n N+ = + = …               (10) 

where h is the width of partition I which is 
ft

h
N

= . 

3. Result and Discussion 

This section will discuss the determination of parameters 

contained in the exponential growth model, logistics and SIR 

epidemic models. The parameter determination method that 

will be used includes the exact method, the numerical method 

using Gauss-Newton’s and the PSO algorithm. For the 

logistics model, parameter determination will be carried out 

using the exact method and the PSO algorithm. The Gauss-

Newton’s method requires a partial derivative of each 

variable which causes the equations involved in the logistics 

model to become very complex. In the SIR epidemic model, 

the parameter determination method used is only the PSO 

algorithm because there is no analytical method to solve the 

SIR differential equation system. 

3.1. Determination of Exponential Model Parameters 

The exponential growth model is expressed in the form of 

an ordinary first order linear differential equation, i.e 
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( )
( )

dN t
N t

dt
λ=                                (11) 

where λ is a comparative parameter whose value is positive 

to describe the increase and negative for the decrease. The 

analytical solution of an exponential growth model using 

variable separation is given by 

0( ) tN t N eλ=                                   (12) 

where 0N  nitial value, the value of ( )N t  when 0 .t t=  To 

determine the parameters in equation (12), equation (12) 

needs to be expressed in a linear equation. Transformation of 

natural logarithms in each of the segments in equation (12) 

will result. 

( ) ( )0ln ( ) lnN t t Nλ= +                          (13) 

Equation (13) is a linear equation with respect to t with 

slope λ and intercept ( )0ln .N  To determine the parameter 

0, Nλ  from the exponential model of the given data can be 

done with the following procedure. 

Algorithm 1. Determination of exponential model 

parameters 

1. Data input ( , )i it d  

2. Transform data using natural logarithm, called .iD  

3. The shape of matrix A is based on equation (4) using 

data .iD  

4. Form a vector b  based on equation (5) using it  and 

.iD  

5. Solve system of linear equations to get parameter 

values ( )0, ln Nλ . To obtain 0N  can be done using 

exponential of 0ln( ).N  

3.2. Determination of Logistics Model Parameters 

The logistic growth model is an improvement model of the 

exponential model by changing the value of proportionality 

with a linear function with a negative slope. The form of 

logistic growth model is given by 

( )( )
( ) ( )

dN t
a bN t N t

dt
= −                       (14) 

with a, b is a positive parameter that states the proportion of 

natural growth and decline due to population saturation. 

Using the variable separation method, an analytic solution 

will be obtained from equation (14), i.e. 

max

( )

( )
ln

1
N t

N

dN t
at c

 
  = +
 −
 

                         (15) 

with max
a
b

N =  is the maximum population. Equation (15) is 

a linear equation with respect to t with the slope a and 

intercept c. To determine parameters a, b of the logistic 

model from the data provided can be carried out with the 

following procedure. 

Algorithm 2. Determination of logistic model parameters 

with data 

1. Data input ( , )i it d  

2. Set the value maxN as the maximum population of id  

plus a certain positive constant 

3. Transform the data using the left column in equation 

(15), called .iw  

4. The shape of matrix A is based on equation (4) using 

data .iw  

5. Form a vector v  based on equation (5) using data it  

and .iw  

6. Solve system of linear equations to get parameter 

values , .a c  

7. The value of parameter b is defined by 
max

a
N

b = . 

3.3. Determines the SIR Model Parameters Using PSO 

To determine parameters with PSO, a solution from the 

SIR epidemic model is needed. Because the SIR epidemic 

model cannot be solved analytically, this model will be 

solved numerically, using the Euler method. PSO uses swarm 

to find food sources, which in computing is the solution to 

the problem. Because there are ( )nV  parameters in the SIR 

epidemic model, in this case ,α β  with each parameter using 

nS  swarm and updating itM calculations, x is the position 

matrix of the PSO swarm that stores the solution and is 

expressed as 

( )x ,nV nS itM×                                (16) 

The same is true for V as the velocity matrix for the PSO 

swarm. Each swarm has its own search history and will store 

the best search results as PersonalBest. Therefore 

PersonalBest matrix is defined as the search history of each 

PSO i.e 

( )Pb ,nS nV itM×                             (17) 

The results of searching for all swarms on one variable 

will be best selected as a reference for the whole swarm 

motion step known as GlobalBest. GlobalBest is the best 

position matrix for all swarms in one parameter throughout 

the iteration so that it is defined 

( )Gb ,nV itM                                (18) 

Algorithm 3. Determination of SIR epidemic model 

parameters using PSO 

1. Input data ( , )i it d . 

2. Input the parameters PSO, 1 2, , 1000c c itM =  

3. Input the numeric parameter 1E 5tolM = −   

4. Set the swarm position at first iteration randomly. 

5. Set the swam speed at first iteration randomly. 

6. Calculate fitness value based on Algorithm 4. 
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7. Set PersonalBest, which is the value of the swarm 

position in the first iteration 

8. Set GlobalBest, the swarm position value that gives the 

best fitness value. 

9. For i = 1: itM 

10. Update the swarm position value with equation (6) 

11. Update swarm speed values with equation (7) 

12. Calculate the i
th

 fitness swarm value using Algorithm 4 

13. Determine the PersonalBest of each swarm from first 

iteration to i
th

 iteration 

14. Determine the entire global swarm from first iteration 

to i
th

 iteration 

15. Check the correctness of one of the following 

conditions 

a) The difference of i
th

 and (i-1)
th

 iteration swarm is 

less than or equal to tolM 

b) The difference in the fitness value of all parameters 

is less than or equal to the tolM 

c) Maximum iteration of itM has been reached 

16. If one of the criteria is true, the iteration is stopped 

17. End for. 

GlobalBest and PersonalBest are determined based on 

fitness values. Fitness value is the value of the function to 

determine the solution. The fitness value in the SIR epidemic 

model is the absolute difference between the data and 

numerical solutions generated using the Euler method with 

parameter data from the PSO. 

The parameter determination step in the SIR epidemic 

model using PSO is given in Algorithm 3 and the fitness 

value is determined by the procedure given in Algorithm 4. 

Algorithm 4. Calculation of fitness values using the Euler 

method 

1. Data input ( , )i it d  

2. Input initial values of SIR 0 0 0, , .s i r  

3. Complete the SIR model in equation (8) with initial 

values and parameters ,α β for all swarm, { , },i i kt xn  for 

1, 2, ,k nS= …  using the Euler method in equation (10) 

4. Calculate the absolute value of the difference between 

the solutions { , }| | .k i i ke d xn= −  

5. Sort the value of ke from smallest to largest. 

3.4. Numerical Simulation 

In this section numerical simulations are performed to see 

a comparison between analytic methods, Gauss-Newton’s 

and PSO in determining the parameters of dynamic models. 

For numerical simulation purposes, the basic parameters used 

in PSO are given in Table 3. 

Table 3. The parameters used in numerical simulations. 

Parameters Symbol Value 

Initial guess of parameters A, B 

Gauss-Newton’s method 0 0,A B  Adjusted dataset 

Cognitive swarm PSO 1 2,c c  {1.2,1.8,2.4}  

Swarm amount nS  {30,100}  

Maximum iteration itM  1000  

Maximum error tolerance tolM  1E 5−  

First, the exponential model parameters will be determined 

using analytical methods, Gauss-Newton’s and PSO from 

temperature and humidity comparison data in the earth's 

atmosphere [15] presented in Table 4. 

Based on the data provided, using the procedure in 

Algorithm 1 obtained a matrix A  and vector b  i.e. 

80 13 20.32703
A , b

8100 80 693.6217

   
= =   
   

                 (19) 

Because the determinant of matrix A in equation (19) is not 

zero then there is a single solution, namely 

00.0747, 3.015.Nλ = = For PSO three different swarm 

values will be used with 1 2 1.8.c c= =  Full simulation results 

are given in Table 5. 

Table 4. Humidity based on height. 

Temperature (°C) -40 -30 -20 -10 0 5 10 15 20 25 30 35 40 

Humidity (g/kg) 0.1 0.3 0.75 2 3.5 5 7 10 14 20 26.5 35 47 

Table 5. Results of parameter determination from data Table 4 for the exponentioal model and its error. 

No Methods 0A  0B  nS itM TOC iA  iB  Error Relative Error 

1 Analitik - - - - - 0.074718 3.015647 25.22 14.736% 

2 GN 0.3 0.2 - 100 2.57 4.103670 0.061240 2 1.169% 

3 GN 0.5 5 - 100 2.56 0.5 3.75 2.43E+129 142E+127% 

4 GN 5 5 - 100 2.57 5 3.75 2.4E+131 142E+129% 

5 PSO - - 30 157 3.21 4.103666 0.061235 1.716426 1.003% 

6 PSO - - 100 142 2.48 4.103668 0.061235 1.716426 1.003% 

7 PSO - - 150 172 3.58 4.103676 0.061235 1.716426 1.003% 

 
In Table 5 it can be seen that the PSO algorithm generates 

parameters that make the exponential model approach the 

data provided compared to the analytic and Gauss-Newton’s 

methods. In the Gauss-Newton’s method there are different 

results resulting from the selection of different initial values. 

The selection of an incorrect initial value in the Gauss-

Newton’s method results in a divergent method or does not 

succeed in finding a solution. The swarm movement with 

{30,100}nS =  from the randomly chosen starting point to 

the final solution point, is given in Figure 1. 

Figure 1 is a picture of the position of each swarm in each 

iteration. Each swarm in each iteration will find a new 

position that is a potential solution. Eventually, all swarms 
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will gather at the same point where that point is the final 

solution which is a parameter of the exponential model. 

 

(a) �� � 30 

 

(b) �� � 100 

Figure 1. Swarm movement from initial position to the exponential model 

parameter point for {30,100}nS =  from the data in Table 4. 

Comparison between data and numerical solutions using 

parameters determined by PSO and theirs error is given in 

Figure 2. 

 

(a) 

 

(b) 

Figure 2. Numerical solutions of exponential and error models for data in 

Table 4. 

In the logistics model, the method to be compared is the 

analytical method and PSO. The dataset used is the Bison 

population data in the Yellowstone area [16] presented in 

Table 6. Based on the data in Table 6 and using the procedure 

in Algorithm 2, matrix A  and vector b  are obtained 

57,495 30 209.276
A , b

110,191,415 57,495 40,177.63

   
= =   
   

     (20) 

Table 6. Bison population data in the Yellowstone area from 1902-1931. 

No Year Population No Year Population No Year Population 

1 1902 44 11 1912 192 21 1922 647 

2 1903 47 12 1913 215 22 1923 748 

3 1904 51 13 1914 229 23 1924 808 

4 1905 74 14 1915 270 24 1925 830 

5 1906 80 15 1916 348 25 1926 931 

6 1907 84 16 1917 397 26 1927 1008 

7 1908 95 17 1918 423 27 1928 1057 

8 1909 118 18 1919 504 28 1929 1109 

9 1910 149 19 1920 501 29 1930 1124 

10 1911 168 20 1921 602 30 1931 1192 
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Table 7. The results of the determination of parameters using analytical methods, PSO and their errors. 

No Methods nS  itM  TOC iA  iB     Error Relative Error 

1. Analytic - - - 0.310833 0.000261 4014.949 28.59% 
2. PSO 30 226 3.56 17.17955 0.011288 4017.628 28.61% 

3. PSO 100 245 7.15 17.17955 0.011288 4017.628 28.61% 

 

Furthermore, the results of the comparison of parameters 

from the data in Table 6 for the logistic model by comparing 

the analytical method which is the system of linear equations 

solution of equation (20) and the PSO algorithm are given in 

Table 7. 

Table 7 shows that the PSO algorithm obtains parameters that 

make the logistic model approach the data with a very small 

error rate difference (0.02%) compared to analytical methods. 

When viewed, the analytical method and the PSO algorithm 

produce parameter values that are far different but both produce 

almost the same function values. Swarm movement with 

{30,100}nS =  from the randomly selected starting point to the 

final solution point, is given in Figure 3. The comparison curve 

between data and numerical solution using parameters 

determined by PSO and the error is given in Figure 4. 

 
(a) 30nS = . 

 
(b) 100nS = . 

Figure 3. Swarm movement from initial position to the logistical model 

parameter points for {30,100}nS =  from the data Table 6. 

  
(a) 

  
(b) 

Figure 4. Numerical solutions of the logistic model and its error in the data 

of Table 4 at [1902,1931]t ∈ . 

Data describing the SIR epidemic model are not easy to 

find. Therefore, this simulation will use simulation data that 

is created using predetermined parameters. The PSO 

algorithm is used to re-guess the parameters based on data 

that has been made previously. To see whether the error 

generated for all parameters is below the maximum 

tolerance, it will be tested by hypothesis testing using R 

software. The SIR epidemic model parameters used are given 

in Table 8. These parameters are randomly selected at 

intervals (0.1). The data made consisted of 100 pieces of data 

for each compartment defined at. 
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Table 8. Parameters used to generate data of SIR epidemic model. 

No α β No α β No α β No α β 

1 0.9756 0.6774 6 0.6136 0.6839 11 0.4152 0.7281 16 0.4459 0.8515 

2 0.1614 0.1245 7 0.4105 0.4273 12 0.1491 0.7248 17 0.4971 0.2100 

3 0.7945 0.5955 8 0.9692 0.2768 13 0.4943 0.6450 18 0.1561 0.8267 

4 0.9244 0.7729 9 0.6532 0.9780 14 0.8487 0.0859 19 0.6979 0.2064 

5 0.4663 0.5796 10 0.7714 0.9649 15 0.6778 0.5279 20 0.2047 0.4755 

 
The simulation results of the determination of parameter 

α and β in Table 8 using PSO are presented in Table 9. 

Table 9 show numE  that is cumulative absolute error 

between generated data and numerical solution using the 

parameters, itM is iteration that PSO needed to obtained 

desired parameters, Eα  and Eβ  are absolute errors 

parameter α and ,β  ( )Rel α  and ( )Rel β  are relative errors 

each parameters. From Table 9, each parameter has error 

less than 10%. The biggest error occur in parameter set 

number 18, the smallest error occur at number 2 and 

average error is 3.35%. 

Table 9. The results of the determination of SIR parameters with PSO and its error. 

No sαααα  sββββ  mumE  itM Eαααα  Re l )(αααα  Eα βα βα βα β====  Re l )(αααα  

1 0.95459 0.67289 1.62E-03 127 2.10E-02 2.15% 4.51E-03 0.67% 

2 0.16097 0.12451 8.49E-05 125 4.33E-04 0.27% 1.42E-05 0.01% 

3 0.77836 0.58998 7.73E-04 129 1.61E-02 2.03% 5.52E-03 0.93% 
4 0.89617 0.75741 5.35E-04 143 2.82E-02 3.05% 1.55E-02 2.00% 

5 0.45013 0.56176 9.97E-06 123 1.62E-02 3.47% 1.78E-02 3.08% 

6 0.59115 0.66251 3.09E-05 132 2.25E-02 3.66% 2.14E-02 3.13% 
7 0.40193 0.42014 1.09E-03 192 8.57E-03 2.09% 7.16E-03 1.68% 

8 0.95882 0.28262 3.10E-02 137 1.04E-02 1.07% 5.82E-03 2.10% 

9 0.60877 0.91649 4.21E-06 144 4.44E-02 6.80% 6.15E-02 6.29% 
10 0.72709 0.91538 1.90E-05 141 4.43E-02 5.74% 4.95E-02 5.13% 

11 0.39123 0.68834 3.57E-05 162 2.40E-02 5.77% 3.98E-02 5.46% 

12 0.13650 0.66395 5.14E-07 151 1.26E-02 8.45% 6.08E-02 8.40% 
13 0.47435 0.62158 7.99E-06 140 2.00E-02 4.04% 2.34E-02 3.63% 

14 0.86256 0.08594 2.60E-02 179 1.39E-02 1.63% 8.66E-05 0.10% 

15 0.66525 0.52294 4.69E-04 99 1.25E-02 1.85% 4.96E-03 0.94% 
16 0.41431 0.79392 1.73E-06 140 3.16E-02 7.08% 5.76E-02 6.76% 

17 0.49476 0.21253 5.99E-03 145 2.34E-03 0.47% 2.53E-03 1.21% 

18 0.14093 0.74714 3.22E-07 118 1.52E-02 9.72% 7.96E-02 9.62% 
19 0.69284 0.20934 1.98E-02 192 5.06E-03 0.72% 2.94E-03 1.43% 

20 0.19547 0.45483 3.10E-06 154 9.23E-03 4.51% 2.07E-02 4.35% 

 

 

(a) Parameter = 1. 

 

  

(b) Parameter = 4. 
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(c) Parameter = 11. 

 

(d) Parameter = 20. 

Figure 5. Swarm movement from the initial position to the solution point of 

the parameters {1, 4, 11, 20} for [0,30]t ∈  determined by 1000itM = . 

 

(a) Parameter = 1. 

 

(b) Parameter = 4. 

 

(c) Parameter = 11. 

 

(d) Parameter = 20. 

Figure 6. The numerical solution of the SIR epidemic model of the 

parameters {1, 4, 11, 20} for [0,30]t ∈  determined by 1000itM = . 

Figure 5 shows the swarm movement for parameter {1, 4, 

11, 20} from the randomly selected starting point to the 

solution point. The number of swarms used in the simulation 

of this section is 30 swarm by selecting social and individual 
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cognitive at a value of 1.8. It can be seen in Figure 5 that the 

swarm does not continue to reach itM = 1000 because at a 

certain iteration point, the stoping condition in Algorithm 3 

has been fulfilled. It can be seen in Figure 5 that all swarms 

gather at two points which are the parameter values to be 

determined. 

 

(a) Parameter = 1. 

 

(b) Parameter = 4. 

 

(c) Parameter = 11. 

 

(d) Parameter = 20. 

Figure 7. Error data and numerical solutions of SIR epidemic models of 

parameters {1, 4, 11, 20} for [0,30]t ∈  determined by 1000.itM =  

The numerical solution curves of the SIR epidemic model 

using parameters resulting from the determination using PSO 

are shown in Figure 6. 

The error curve between data and numerical solution from 

SIR using parameters generated by PSO is shown in Figure 

7. The error values are obtained using ( ) ( ) ( )x ne t x t x t= −  in 

each time, where ( )nx t  is solution obtained from Euler 

using parameters produced by PSO. Error between data ( )s t  

and ( )ns t shown in blue line, error between ( )i t  and ( )ni t  

shown in red line and error between ( )r t  and ( )nr t  shown 

in green line. The smallest error is occured at 0t =  while the 

biggest error is occured in around 5t = . 

The final step of this simulation is to test whether the 

relative error resulting from the α and β parameters generated 

by PSO is as expected. For this purpose, a statistical 

hypothesis is made: 

0H : The average relative error of the parameters α, β in 

Table 9 is less than equal to 3%. 

1H : The average relative error of the parameters α, β in 

Table 9 is greater than 3%. 

Hypothesis testing is done by t-test on R software by 

selecting a significance level of 1%. The output of the Table 

9 test with the t test using R is shown in Figure 8. Figure 8 

shows that for a significance level of 1% with a mean of 3% 

the test yields a p-value = {0.1245, 0.2938} which means it 

does not reject 0H  or in other words, It is true that the 

relative error produced by PSO to determine the parameters 

α, β is less than or equal to 3% with a significance level of 

1%. 
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Figure 8. The results of the t-test on the parameters of the relative error data 

in Table 9. 

4. Conclusions 

This article has discussed the determination of parameters in 

the exponential, logistical and SIR epidemic models using the 

PSO algorithm. For each models, the parameter value are 

obtained by applying an introduced algorithm related to the 

models. Exponential and logistical models are the basic models 

from which analytic solutions can be determined. Based on the 

simulation, it is clear that the PSO algorithm gives better results 

than the analytical method and the Gauss-Newton’s method. For 

the SIR model, the data used is simulation data generated from 

parameters whose values are known. The result of parameter 

determination using PSO shows that the PSO algorithm can find 

the origin parameters with a very small error rate. Based on the 

average hypothesis test, it appears that the relative error resulting 

from the PSO algorithm for parameter determination is less than 

3% with a significance level of 1%. In the simulation of 

determining SIR parameters, only one PSO parameter is used. 

This is due to the need for a heavy simulation due to having to 

solve numerical solutions of the system of differential equations 

for each swarm in all iterations. For further research, it is 

necessary to consider the effect of swarm number and cognitive 

swarm selection on the resulting error. In addition, adaptive PSO 

can also be applied to studies that have been carried out in terms 

of swarm convergence speed for the determination of 

parameters involving SIR and forms of SIR development such 

as SEIR and SIRS model. 
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