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Abstract: In this paper, a new efficient syndrome-weight decoding algorithm (NESWDA) is presented to decode up to five 

possible errors in a binary systematic (47, 24, 11) quadratic residue (QR) code. The main idea of NESWDA is based on the 

property cyclic codes together with the weight of syndrome difference. The advantage of the NESWDA decoding algorithm over 

the previous table look-up methods is that it has no need of a look-up table to store the syndromes and their corresponding error 

patterns in the memory. Moreover, it can be extended to decode all five-error-correcting binary QR codes. 
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1. Introduction 

The well-known QR codes, introduced by Prange in his 

report [1] in 1957, are cyclic BCH codes with code rates 

greater than or equal to one-half and generally have large 

minimum distances so that most of the known QR codes are 

among the best-known codes. The code augmented by a parity 

bit, for instance, the (24, 12, 8) QR code has be used for 

numerous communication links, including the Voyager 

imaging system link of NASA [2]. In the past decades, a series 

of different decoding methods given in [6-15] have been 

developed to decode the QR code. However, these algebraic 

decoding techniques require a large number of complicated 

computations in a finite field. These complicated 

computations will lead to a time delay in the decoding 

procedures and therefore the decoding time will become 

unrealistic when the code length is large. Therefor, to reduce 

the decoding complexity, we introduce the NESWDA 

algorithm, which can be used to decode the (47,24,11) QR 

code. It allows for the correction of up to

( ) ( )t 1 2 11 1 2 5d   = − = − =     errors, where x   denotes 

the greatest integer less than or equal to x; t is the 

error-correcting capability and d=11 is the minimum 

Hamming distance of the code. 

Recently, table look-up decoding algorithms have been 

developed to decode the (47, 24, 11) QR code. The full lookup 

table in the conventional table look-up decoding algorithm 

(CTLDA) needs 

5

1

47
1729647

i i=

 
= 

 
∑  syndromes and their corresponding 

error patterns. It requires 1729647 × (6bytes + 3bytes) ≈ 14.85 

Mbytes memory size to store the table. Such a large memory 

required makes the computation very complicated. An 

efficient algorithm named look-up table decoding (LTD) 

algorithm in [3] to decode the (47, 24, 11) QR code needs 1.05 

Mbytes memory size to store the table. The well-known 

syndrome decoder [2]  

Requires 

5

i 1

47
47 1729647 47 36801

i=

  
= =   

  
∑  

syndromes corresponding to error patterns stored in a table 

with a 36801 × (6bytes +3bytes)=1024 ≈ 323.45 Kbytes 

memory size, called the reduced lookup table (RLT). However, 

this memory size of the RLT is still so large that one needs to 

further reduce the memory size of the look-up table. To 

achieve this end, an efficient table look-up decoding algorithm 

(TLDA) in [4] is developed to decode the (47, 24, 11) QR 

code, the memory size of the developed condensed look-up 

table consists of 36.6 Kbytes, and Lin et al. [5] used a novel 

table look-up decoding algorithm, called the cyclic weight 

(CW) decoding algorithm, together with a memory size 20.43 

Kbytes to decode the (47, 24, 11) QR code. As shown in this 

paper, the proposed NESWDA does not need a memory size to 

store the look-up table. The prime idea of the proposed 
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NESWDA is based on the weight of syndrome difference 

between the syndrome of the received word and the row vector 

of the transpose of the parity-check matrix. Moreover, no 

complicated computation in the finite field is required in the 

proposed NESWDA and it also can be extended to decode all 

five-error-correcting binary QR codes. 

The remainder of this paper is organized as follows: The 

background of the binary QR codes is briefly given in Section 

2. The proposed NESWDA is described in Section 3. In 

Section 4, two examples are used to demonstrate the proposed 

NESWDA. Finally, this paper concludes with a brief summary 

in Section 5. 

2. Background of the Binary QR Codes 

The binary QR codes are a nice family of linear cyclic codes. 

Let ( )n, ,k d  or ( )( )n, 1 2,n d+  denote the binary QR 

codes with generator polynomial ( )g x  over ( )2GF . The 

length of this code is a prime number of the form n 8 1l= ± , 

where l is some integer. Also, let ( )k n 1 2= +  denote the 

message length or information length, and d  denote the 

minimum Hamming distance of the code. The set 
n

Q  of 

quadratic residues modulo n  is the set of nonzero squares 

modulo n ; that is, { }2

n mod ,1 1Q j j x n x n= ≡ ≤ ≤ − . If n

= 47, then its quadratic residue set is 

{ }47 1,2,3,4,6,7 8,9,12,14,16,17,18, 21, 24,25,27,28,32,34,36,37,42 .Q = ，  

Let the symbol 
47

C  denote the binary (47, 24, 11) QR code. 

Let α  be a root of primitive irreducible polynomial 

( ) 5 23
p 1x x x= + + such that α  is a generator of the 

multiplicative group of all nonzero elements in ( )232GF . 

Then, the element uβ α=  where ( )232 1 47 178u = − = , 

481, is a primitive 47th root of unity in ( )232GF . The 

generator polynomial ( )g x  of the binary (47, 24, 11) QR 

code is defined by 

( ) ( )
47

2 3 5 6 7 9 10 12 13 14 18 19 231i

i Q

g x x x x x x x x x x x x x x x xβ
∈

= − = + + + + + + + + + + + + + +∏  

where the degree of ( )g x  is 23, which is the multiplicative 

order of the integer 2 modulo the code length 47; that is,
23

2 1mod 47≡ . The (47, 24, 11) QR code generated by this 

manner can correct up to five errors. 

A codeword of binary QR code is a polynomial 

( ) 2 1

0 1 2 1

n

nc x c c x c x c x
−

−= + + + +⋯  such that it is a multiple 

of the generator polynomial ( )g x . If the codeword ( )c x  is 

transmitted through a noisy channel, then the received 

polynomial ( ) 2 1

0 1 2 1

n

nr x r r x r x r x
−

−= + + + +⋯  can be 

expressed as the sum of the codeword polynomial ( )c x  and 

the error polynomial ( ) 2 1

0 1 2 1

n

ne x e e x e x e x
−

−= + + + +⋯ . For 

simplicity, let the message or information, codeword, error 

pattern, received word, and syndrome be expressed as the 

binary vector forms m ( )0 1 1, , , km m m −= ⋯ , c ( )0 1 1, , , nc c c −= ⋯ , 

e ( )0 1 1, , , ne e e −= ⋯ , r ( )0 1 1, , , nr r r −= ⋯  and s 

( )0 1 1, , , n ks s s − −= ⋯ , respectively. The systematic codeword of 

the vector form is given by c mG= , where G  is called the 

systematic generator matrix. Let A  be a ( )k n k× − matrix and 

k
I  be a k k× identity matrix, and G can be expressed as G 

k k n
I A

×
 =   . The parity-check matrix H  can be expressed as

( )
T

n k
n k n

H A I − − ×
 =   , where TA  denotes the ( )n k k− ×

transpose matrix of A . The vector form of the syndrome is 

defined by s r
T

H= , where TH  denotes the ( )n n k× −  

transpose matrix of H ; that is, TH  can be expressed as 

0

1

1

T

n k

n

h

A h
H

I

h

−

−

 
 

   = =    
 
 

⋮
                   (1) 

For 
47

C , A has the following form: 

 

Figure 1. A  of 47C . 

3. Decoding Algorithm and Theorems 

Definition 1. The Hamming weight of a binary vector a is 

denoted by w(a), and the Hamming distance between a and b 
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is denoted by d(a, b) = w(a+b). 

Theorem 1. Let a ( )0 1 1
, , ,

n
a a a −= ⋯  and b

( )0 1 1
, , ,

n
b b b −= ⋯  be two binary vectors, then 

w(a+b) = w(a) + w(b) − 
1

0

2 .
n

i i

i

a b
−

=
∑           (2) 

Corollary 1. If 0
i i

a b =
 

for 0 1i n≤ ≤ − , then 

w(a+b) = w(a) + w(b).                   (3) 

The following Theorem is useful to compute the syndrome 

of the received word when the received word shifts one bit to 

the right. 

Theorem 2. Let ( )s x  be the syndrome polynomial 

corresponding to a received polynomial ( )r x . Also, let 

( ) ( )1
r x  be the polynomial obtained by cyclically shifting the 

coefficients of ( )r x one bit to the right. Then the remainder 

obtained when dividing ( )xs x  by ( )g x  is the syndrome 

( ) ( )1
s x corresponding to 

( ) ( )1
r x . 

For a detailed proof, see [2]. 

However, if the syndrome cyclically shifts many times, then 

the syndrome computation is quite time-consuming for 

dividing ( )xs x  by ( )g x  many times. The following 

theorem provides an efficient method to compute ( )i
s  for 

0 1i n≤ ≤ − , and it can save a lot of computational time. 

Theorem 3. For the binary QR codes, let 
jr  be an element 

of r and 
jh  be the jth row vector of TH  for 0 1j n≤ ≤ − . 

Then the syndrome ( )i
s  of 

( )
r

i
 for 0 1i n≤ ≤ −  has the form 

( )
[ ]

1

0

n
i

j i j
j

s r h
−

+
=

=∑ ,                      (4) 

where the suffix [ ]x  of h  denotes x  mod n . 

Proof. Let ( )0 1 1
r , , ,

n
r r r −= ⋯  and

( ) ( )1 0 1r , , , , ,
i

n i n n ir r r r− − − −= ⋯ ⋯  for 0 1i n≤ ≤ − . We have 

( )

[ ] [ ] [ ] [ ]

[ ]

0 1 1 0 1 1

1 0 11 0 1

1

0

s
i

n i n i i n i n

n i n n in i i n i i n i i

n

j i j
j

r h r h r h r h

r h r h r h r h

r h

− − − − − −

− − − −− + − + + − − +

−

+
=

= + + + + +
= + + + + +

=∑

⋯ ⋯

⋯ ⋯
 

The proof is thus completed. 

Theorem 3 reveals that the syndrome of 
( )

r
i

 can be fast 

computed by the vector addition. Theorem 4 also provides an 

efficient method to simplify the decoding step by using the 

syndrome weight. 

Theorem 4. For the binary QR codes, it is assumed that 

there are v errors in the received word, where 1 v t≤ ≤ and 

( )1 2t d = −  . All v  errors are in the parity-check bits if 

and only if the weight of syndrome ( )w s v= . 

For a detailed proof, see [4]. 

Theorem 5. For the binary QR codes, if v  errors are in the 

information bits of the received word, where 1 v t≤ ≤ and 

( )1 2t d = −  , then the weight of the corresponding 

syndrome vector satisfies  

( ) 1w s d v t≥ − ≥ +                   (5) 

For a detailed proof, see [5]. 

Theorem 6. For the binary QR codes, let 

( )0 1 1
e , , ,

n
e e e −= ⋯

 
be an error pattern and ( )m 0 1

e , ,
k

e e −= ⋯ ,

( )p 1
e ,

k n
e e −= ⋯  be respectively its message section and 

parity check section. Assume that ( )e 1
m

w ≥ , ( )e 1pw ≥  and 

( )ew t≤ , where ( )1 2t d = −  , then the weight of the 

corresponding syndrome vector satisfies 

( ) 1w s t≥ + .                  (6) 

Proof. As ( ) ( )w s e
T

w H=  

( )( )
( )( ) ( )
( ) ( )( )

11
e ,0 0 ,e

e e

e e

1,

T T

m k pn k

m p

m p

w H H

d w w

d w w

d t t

×× −
   = +   

≥ − −

= − +

≥ − ≥ +  

the proof is thus completed. 

Given a received word r , the syndrome ( )i
s  of 

( )
r

i
 can 

be fast computed by theorem 3. According to theorem 4, if 

( )1 5w s≤ ≤  then error positions are in the parity-check bits 

of r . If 
( )( )1 5
k

w s≤ ≤ , then the error positions are in the 

information bits of r . Let 
jh  denote the jth row vector of 

TH , where 0 1j n≤ ≤ − . Also let 
z

sd  denote the syndrome 

difference between the syndromes of r  and 
jh  in each 

decoding step z . By using the weight of 
z

sd , the error cases 

can be quickly determined. Let ( )0
1,0, ,0u = ⋯  be a k-tuples 

unit vector and 
i

u  has only one nonzero component at the i

th position, where 0 1i k≤ ≤ − . By using these properties the 

decoding algorithm can be constructed. Let case I, C, P denote 

the error position in the information bits, center bit, and 

parity-check bits of r , respectively. The decoding steps of the 

proposed NESWDA work as follows: 

(1) (No error, P, PP, PPP, PPPP, and PPPPP cases) By 

theorem 3, compute s  and ( )w s . If ( )0 5w s≤ ≤ , 

then the information vector is ( )0 1 1
m , , ,

k
r r r −= ⋯ . Go 

to step (8). 

(2) (I, II, III, IIII, and IIIII cases) By theorem 3, compute

( )k
s  and 

( )( )k
w s . If 

( )( )1 5
k

w s≤ ≤ , then the corrected 
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information vector is ( ) ( )( )0 1 1
m , , , ,0

k

k
r r r s−= +⋯ . Go 

to step (8). 

(3) (IP, IPP, IPPP, IPPPP, C, CP, CPP, CPPP, and CPPPP 

cases) Compute the syndrome difference 
3 i

sd s h= −  

for 0 1i k≤ ≤ −  and ( )3
w sd . If ( )3

4w sd ≤ , then the 

corrected information vector ( )0 1 1
m , , ,

k i
r r r u−= +⋯ . 

Go to step (8). 

(4) (IC, IIC, IIIC, IIIIC, IIP, IIIP, and IIIIP cases) Compute 

the syndrome difference ( )
4

k

i
sd s h= −  for 

0 1i k≤ ≤ −  and ( )4
w sd . If ( )4

4w sd ≤  and 0i = , 

then the corrected information vector 

( ) ( )0 1 1 1 4
m , , , ,0

k k
r r r u sd− −= + +⋯ . If ( )4

4w sd ≤  and

0 1i k≤ ≤ − , then the corrected information vector

( ) ( )0 1 1 4
m , , , ,0

k
r r r sd−= +⋯ . Go to step (8). 

Table 1. The number of error patterns in each decoding step of C47. 

Steps Cases Number of error patterns 

1 P, PP, PPP, PPPP, PPPPP 44551 

2 I, II, III, IIII, IIIII 44551 
3 IP,IPP,IPPP,IPPPP,C,CP,CPP,CPPP,CPPPP 261649 

4 IC, IIC, IIIC, IIIIC, IIP, IIIP, IIIIP 261119 

5 IIPP, IIPPP, ICP, ICPP, ICPPP 559153 
6 IICP, IIICP, IIIPP 494615 

7 IICPP 64009 

Sum 35 
5

1

47
1729647

i i=

 
= 

 
∑  

 
(5) (IIPP, IIPPP, ICP, ICPP, and ICPPP cases) Compute the 

syndrome difference 
5 i jsd s h h= − −  for 

0 1i j k≤ < ≤ − and ( )5
w sd . If ( )5

3w sd ≤ , then the 

corrected information vector 

( )0 1 1
m , , ,

k i j
r r r u u−= + +⋯ . Go to step (8). 

(6) (IICP, IIICP, and IIIPP cases) Compute the syndrome 

difference
( )

6

k

i jsd s h h= − −  for 0 1i j k≤ < ≤ −  and 

( )6
w sd . If ( )6

3w sd ≤  and 0i = , then the corrected 

information vector ( ) ( )0 1 1 1 6
m , , , ,0

k k
r r r u sd− −= + +⋯ . 

If ( )6
3w sd ≤  and 0i > , then the corrected 

information vector ( ) ( )0 1 1 6
m , , , ,0

k
r r r sd−= +⋯ . Go to 

step (8). 

(7) (IICPP case) Compute the syndrome difference 

7 1k i jsd s h h h−= − − −  for 0 2i j k≤ < ≤ −  and

( )7
w sd . If ( )7

2w sd ≤ , then the corrected information 

vector ( )0 1 1 1
m , , ,

k i j k
r r r u u u− −= + + +⋯ . Go to step 

(8). 

(8) Stop. 

Table 1 lists all the 35 error cases and the number of error 

patterns in each decoding step of 
47

C of the proposed 

NESWDA. The flowchart of the proposed NESWDA is 

shown in figure 1. 

4. Example 

In this section, two examples are presented to illustrate the 

proposed NESWDA. 

Example 1. Let a information m = 

(010000000000000000000000) be encoded into a 
47

C  

codeword 

c = (01000000000000000000000001111011101101110001100). 

If the received word 

r = (11110000000000000000000001111011101101110001100), 

then the error pattern 

e = (10110000000000000000000000000000000000000000000), 

which means a III error case. The decoding procedure is 

composed of the following steps. 

(1) Compute s = (11010100010110000111101) and w(s) = 

12. Since w(s) > 5, go to step 2. 

(2) Compute 
24

s  = (10110000000000000000000) and 

w(
24

s ) = 3 ≤ 5. The corrected information vector is 

m = (111100000000000000000000) + (101100000000000000000000) 

= (010000000000000000000000). 

Go to stop. 
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Figure 2. Flowchart of the proposed NESWDA. 
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Example 2. Let a information m = (010000000000000000000000) be encoded into a 
47

C  codeword 

c = (01000000000000000000000001111011101101110001100). 

If the received word 

r = (01110000000000000000000100111011101101110001100), 

then the error pattern 

e = (00110000000000000000000101000000000000000000000), 

which means a IICP case. The decoding procedure is 

composed of the following steps. 

(1) Compute s = (10000101111010100000100) and w(s) = 

9 > 5, go to step 2. 

(2) Compute 24
s = (11111010101101011011110) and 

w( 24
s ) = 16 > 5, go to step 3. 

(3) Compute 3 i
sd s h= −  for 0 23i≤ ≤  and w( 3

sd ). 

3 0
sd s h= −  = (10000101111010100000100) − 

(11110111011011100011000) 

= (01110010100001000011100), 

w(
3

sd ) = 9. 

3 1
sd s h= − = (10000101111010100000100) − 

(01111011101101110001100) 

= (11111110010111010001000), 

w(
3

sd ) = 13: 

… 

3 9
sd s h= − = (10000101111010100000100) − 

(10000100011011110000110) 

= (00000001100001010000010), 

w(
3

sd ) = 5. 

… 

3 23
sd s h= −  = (10000101111010100000100) − 

(11100110110111000100001) 

= (01100011001101100100101), 

w( 3
sd ) = 11. 

Since every w(
3

sd ) > 4, go to step 4. 

(4) Compute 
24

4 isd s h= −  for 0 23i≤ ≤ and w( 4
sd ). 

24

4 0sd s h= −  = (11111010101101011011110) − 

(11110111011011100011000) 

= (00001101110110111000110), 

w(
4

sd ) = 12. 

24

4 1sd s h= − = (11111010101101011011110) − 

(01111011101101110001100) 

= (10000001000000101010010), 

w(
4

sd ) = 6. 

… 

24

4 23sd s h= − = (11111010101101011011110) − 

(11100110110111000100001) 

= (00011100011010011111111), 

w(
4

sd ) = 14. 

Since every w(
4

sd ) > 4, go to step 5. 

(5) Compute 5 i jsd s h h= − −  for 0 23i j≤ < ≤  and 

w( 5
sd ). 

5 0 1sd s h h= − − = (00001001001100110010000), w(
5

sd ) = 6. 

5 0 2
sd s h h= − −  = (01001111010111111011010), w(

5
sd ) = 15. 

… 

5 0 23
sd s h h= − −  = (10010100010110000111101), w(

5sd ) = 11. 

5 1 2
sd s h h= − −  = (11000011100001101001110), w(

5
sd ) = 11. 

… 

5 1 23sd s h h= − − = (00011000100000010101001), w(
5

sd ) = 7. 

… 

5 22 23sd s h h= − − = (01010000010100101110110), w(
5

sd ) = 10. 

Since every w(
5

sd ) > 3, go to step 6. 

(6) Compute 
24

6 i j
sd s h h= − −  for 0 23i j≤ < ≤  and 

w( 6
sd ). 

24

6 0 1sd s h h= − − = (01110110011011001001010), w(
6

sd ) = 12. 

24

6 0 2sd s h h= − − = (00110000000000000000000), w(
6

sd ) = 2. 

Since w(
6

sd ) = 2 ≤ 3, and 0i = . The corrected information 
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( ) ( )0 1 23 23 6
m , , , ,0r r r u sd= + +⋯ = 

(011100000000000000000001) + 

(000000000000000000000001) + 

(001100000000000000000000) 

= (010000000000000000000000). 

Go to stop. 

5. Conclusions 

A new NESWDA decoding algorithm is developed to 

correct up to five errors for the approximate half-rate (47, 24, 

11) QR code. The main idea behind the proposed NESWDA is 

based on the fact that it makes use of the properties of cyclic 

codes, the weight of syndrome difference. The proposed 

NESWDA has no need of a look-up table to store the 

syndromes and their corresponding error patterns in the 

memory. Moreover, it can be extended to decode all 

five-error-correcting binary QR codes. 
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