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Abstract: The paper presents the results of mathematical and computer simulation of the interaction of radio pulses of an 

arbitrary nature. Pulses of a rectangular and Gaussian shape are considered. We also consider the evolution of the wave packet 

formed as a result of the decay of the bound quantum state. The main reason for the distortion of the pulse shape is the 

interaction of narrow-band spectral components of pulses. 
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1. Introduction 

Interference is a typical phenomenon in wave physics. In 

the propagation of wave impulses, it also takes place, but 

sometimes its manifestations are very unusual and therefore 

meet distrust among practitioners. Before analyzing the 

interference phenomena for pulses, it is necessary to 

determine clearly what interferes with what. Usually, in 

experiments on wave interference, there are two waves, 

which, when superimposed, give an interference pattern. In 

the case of impulses, the picture is complicated by the fact 

that the impulse itself is the result of the interference of a 

large number of its constituent waves-the so-called 

narrowband components or harmonics. The representation of 

a pulse in the form of a Fourier integral gives a picture of the 

distribution of these components over the frequency 

spectrum. It is necessary to understand the difference 

between the two. The Fourier harmonic is a narrowband 

component with an infinitely narrow spectral width and, in 

general, is a mathematical abstraction. The narrowband 

component is a physical concept used, for example, in the 

synthesis of radio frequency filters. The mathematical 

apparatus that presents a signal and, in particular, an impulse, 

as a sum of narrow-band components, has not been 

developed, so we use Fourier analysis. In this article, as well 

as in the literature in general, these concepts are used as 

synonyms. 

2. Interference of Classical Impulses 

The initial pulse E (z = 0, t), given at the point z = 0 of the 

medium, already represents the result of the interference. 

Subsequently, propagating in a dispersive medium, the 

impulse is distorted and its distortions are the result of the 

changed conditions for the combining of its spectral 

components. Since for most pulses, for example, for 

rectangular ones, the number of harmonics is large, then the 

picture of their interaction, i.e. interference picture, looks 

complicated and confusing. However, it is possible to select 

the conditions under which a small number of pulse 

components or pulses will interact, for example, by observing 

the interaction of two pulses. 

Let us consider the problem of the interaction of two 

pulses propagating in a dispersive medium. The problem of 

propagation of a single rectangular radio pulse given at the 

point z = 0 is described by expressions. 
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h(ω) – is the law of dispersion of waves from which a 
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pulse is formed, and T0  is a pulse duration at the point z = 0. 

In the case of an arbitrary dispersion law, this problem has no 

analytical solution and can only be investigated numerically. 

For sufficiently long pulses (T0ω0 >> 1) with a good 

accuracy, one can use the so-called approximation of the 

dispersion theory when the exact expression for h (ω) is 

replaced by its expansion in a Taylor series near the carrier 

frequency of the pulse filling ω0. For example, for a 

rectangular pulse in the second approximation of the 

dispersion theory for E (z, t), was received the expression [1]. 
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and F- is the Fresnel integral: 

2

0

( ) exp
2

x

F x i y dy
π =  

 ∫                        (4) 

Below the Figure 1 shows the results of calculation by the 

formula (2) for the case of propagation of two identical 

rectangular pulses of duration T0 generated at the point z = 0 

with a time interval of 2T0 and moving in one direction. 

 

Figure 1. The behavior of the amplitudes |E1| and |E2| pulses without taking 

into account interference phenomena. Pulses are shown for values N=10 

(lower row), N=4 (middle row), N=1.6 (upper row). The scale on the z-axis 

is arbitrary, 0 0( ) /t zh Tτ ′= − . For pulses for different z, an arbitrary shift 

along the τ axis was applied. 

Figure 1 shows the pulse amplitudes |E1(z,t)| and |E2(z,t)| at 

different values of the distance traveled by them. The 

distortion of the pulses is determined by the parameter 

/N d z= , where 
2

0 0/d T hπ ′′= , which decreases with 

increasing distance traveled by the impulses. Initial value N 

(z =0) = 10, the other two are successively equal 4 and 1.6. 

When the overlap of pulses is small (small z, N = 10) 

interference effects can be neglected. But with a significant 

overlap, this cannot be done and the pattern of amplitude 

distribution must be calculated by adding the fields E1(z, t) 

and E2(z, t) of the pulses and only then calculating their total 

amplitude. The result of this calculation is shown in Figure 2. 

 

Figure 2. The same as in Figure 1 with allowance for pulse interference 

(solid lines). Points show the behavior |E1| + |E2| for the corresponding 

pulses. 

The amplitude distribution in Figure 2 clearly 

demonstrates the interference of impulses. Let's pay attention 

to the fact that even when the impulses do not overlap 

significantly, their amplitude also contains an oscillating 

component. There are different opinions about it. From the 

point of view of practical radio engineering, this is the result 

of "an essentially different relationship between low-

frequency and high-frequency components in their running 

spectra" [2]. According to the adherents of the theory of an 

analytic signal, this is an artifact [3, 4], connected with the 

shortcomings of the theory of a complex signal (in the 

terminology of [5]). It was suggested in [4] that these 

oscillations are also the result of interference of narrow-band 

components of a signal. 

Ideal from the point of view of the theory of an analytic 

signal is a Gaussian pulse 
1
, which, when propagated in a 

dispersive medium, does not exhibit any amplitude 

oscillations. From the point of view of interference theory 

[4], the absence of amplitude oscillations in a Gaussian pulse 

is due to the fact that it, roughly speaking, represents a single 

narrow-band component that has nothing to interfere with. At 

the same time, pulses with a complex envelope, for example, 

rectangular, contain a large number of narrow-band 

components, which even in the case of a single pulse give 

oscillations, interfering with each other. 

To prove the interference nature of oscillations, we show 

that they can also be observed for Gaussian pulses. Consider 

two Gaussian pulses generated at the point z = 0, and the 

                                                             
1
 Although, as noted in [5], a Gaussian pulse is not an analytical signal, it tends to 

it when its spectral width is narrowed. 

τ 



24 Yuriy Zayko:  Mathematical and Computer Simulation of Pulses Interaction  

 

second pulse is delayed relative to the first for a time T. 

{ }2 2
0(0, ) exp( ) exp( ) exp ( )E t i t at a t Tω  = − − + − −     (5) 

Value 1/ a T<<  is the half-width of the pulse by level 1/е. 

Impulses are narrowband, i.e. 0 / 1aω >> . The distortion is 

calculated by formulas (1), in which the second time integral is 

calculated from -∞ to + ∞ since the Gaussian pulse differs from 

zero anywhere. During spreading, the impulses begin to overlap. 

In the same notation as above, we obtain. 
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Using (6), one can obtain an expression for the amplitude | E (z,t)| 
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In Figure 3 is shown the amplitude of the pulses for different 

values of the parameter µ = 02h za′′ . For small µ the pulses do 

not overlap and there are no oscillations. For large µ 

oscillations of the amplitude arise in the overlap region due to 

interference. It also follows from (6) that there is no oscillation 

for one pulse, which agrees with their interference nature. 

 

Figure 3. The amplitude of two Gaussian pulses before overlapping (bottom 

graph, µ =0.5), for the small overlapping (µ = 3.5) and for the large one 

(upper graph, µ = 5.5). Pulse delay 10aT = ; τ = 0( )a t zh′− , 

0/ 2z h aµ ′′= . 

The obtained results, firstly, confirm the interference nature 

of the distortion of the pulses and, secondly, convince in 

approximate nature of the Gaussian pulse, often used by the 

adherents of the theory of analytical signal, which allows it to 

be used only for rough estimates, but not for calculations
2
. 

3. Distortion of Quantum Packets 

In [4] it was suggested the hypothesis that during the decay 

of the bound state described by the wave function Ψ (z, t) 

oscillations of the amplitude Ψ similar to those described 

above can be observed. This statement requires clarification. 

                                                             

2  The "advantages" of the analytical signal were associated, basically, with 

extensive practical applications. At the same time, on such "trifles" as the 

violation of causality simply did not pay attention. 

Let's recall the statement of the problem. Wave function Ψ 

(z, t) of the bound state satisfies the Schrödinger equation 

with potential U (z, t) = U (z) for t ≤ 0 and U (z,t) = 0 for t > 

0. If the potential U (z) is sufficiently smooth, then Ψ (z, t) 

has no discontinuities and is nonzero everywhere, thus 

recalling the Gaussian impulse. In this sense, it is the only 

single narrow-band component, and when freed from the 

potential U, in which it existed before the moment t = 0, it 

should not give oscillations. The physical reason for their 

absence is the absence of conditions for interference. 

Consider the problem of the evolution of a wave packet, 

which until the time t = 0 represented the wave function of 

the n-th bound state of a harmonic oscillator A (z, t = 0) =Ψn 

(z), where 
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Hn – Hermite polynomial, m, ω - mass and frequency of 

the oscillator, ћ - Planck constant [6]. When the potential 

collapses, the wave packet evolves as the wave function of 

the free particle in accordance with formulas 
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which are analogous to the expressions (1) for the problem; 

0 / 2ℏE ω=  – is the energy of the main bound state of the 

oscillator, ћ
2
k

2
/ 2m is the energy of the free particle, having 

the wave number k. After performing the necessary 

calculations, we obtain the final expression. 
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It is seen from (10) that, for fixed t, the pulse, along with 

the expected spreading, demonstrates an additional spatial 

quadratic phase modulation. No additional oscillations of the 

amplitude, like those mentioned above, in accordance with 

the interference theory, are present. 

One can obtain a general formula suitable for investigation 

the dynamics of a collapsing state for any form of the 

potential U (z). Combining the first two formulas in (9) we 

obtain (the value of ω0 is omitted). 
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The integration in (11) is performed over the domain in 

which A (z, 0) is different from zero. Function ( , )z z t′∆ −  

satisfies the condition 
0

( , ) ( )
t

z z t z zδ→
′ ′∆ − → − , where δ 

(z-z’) - is the Dirac delta-function. Formula (11) can be 

applied to solve the problem in the case of a potential U (z) 

that does not satisfy the smoothness condition, for example, 

for a potential in the form of a rectangular potential well with 

infinite walls. It is easy to show that the solution, in this case, 

can be expressed with the help of the same Fresnel integrals 

(4) as in the classical case (see formula (2)). For example, for 

the n – th state in the infinitely deep potential well, when 

( , 0) 2 / sin /A z a n z aπ=  [6], where a  - is the well’s 

thickness, from (11) one can obtain, to within an unimportant 

phase factor. 
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( )F z - Fresnel integral (4). Calculations show that in this 

case, the same amplitude oscillations appear as in the 

classical case. 

4. Conclusions 

Based on the results of the article and previous works [7-

16] it can be argued that the presence or absence of 

oscillations of the quadrature components of the signal 

(pulse) -the amplitude and the instantaneous frequency is due 

to the existence of narrow-band signal components and 

interference between them. The situation is the same for both 

classical and quantum physics. The connection between the 

narrow-band signal components and the spectral components 

of the Fourier spectrum continues to be interesting and 

requires further investigation. 
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