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Abstract: This paper aims to study the Cotangent Bundles Hamiltonian Tubes theorem and its applications in reduction 
theory. The mathematical analysis method used. And found some results; The theory of reduction of cotangent bundles 
developed playing an important role in solution of the general problem for reduction a single or bit type cotangent bundles for 
base manifolds, possibility study of Hamiltonian tubes when the simplistic manifolds is a cotangent bundles, in the concrete 
case of cotangent bundles there is a strong motivation coming from geometric mechanics and geometric quantization that 
makes it desirable to obtain explicit fiber local models. 
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1. Introduction 

The Cotangent Bundles	�∗� of manifold d�	provides the 
basic model of a symplectic manifold. The Cotangent 
Bundle�	�∗� is a smooth manifold itself, whose dimension 
is 2� . The Hamiltonian is natural energy function on the 
cotangent bundles. The total space of a cotangent bundles 
naturally has the structure of a symplectic manifold. 
Let 	��	 be � 		 dimensional differentiable manifold of 
class	
∞ and �∗���� the cotangent bundles over	��. If	
� 	are 
local coordinates in neighborhood		�	of a point	� ∈ ��. Then 
the Cotangent Bundle�	��� has a dual space ��∗�.	In case M 
is model on Euclidean space	��  we have	��� ≈ ��	and so 
we want to assume that 	��∗�  ≈�� *. This article concerns 
cotangent –lifted actions of a lie group	�  on a cotangent 
bundlesΤ*�. We are motivated in part by the role of such 
action a groups of a symplectics of Hamiltonian systems with 
cotangent bundles phase spaces. Time –dependent smooth 
Hamiltonian on	Τ*�, the cotangent bundles of	�. We assume 
that	  is 1-periodic in time and grows a symptotically 
quadratically on each fiber. Generically, the corresponding 

Hamiltonian system	
`(%) =&H'%, 
	�%�). We can introduce 
the Legendre transformation we need some basic facts about 
the structure of the cotangent bundles �∗�  of a nd  � 	
	dimensional differentiable manifold	�. 

1.1. Definition of Cotangent Space 

Given any	
, 	manifold �, of dimensionn, with - . 1, 
for any 0 ∈ �, the tangent space at 0, denoted	�����, is the 
space of linear derivations on 12,�

�,�  that vanish on 	32,�
�,� . 

Thus,T5�M� can be identified with (12,�
�,� /32,�

�,� )* the space 

12,�
�,� / 32,�

�,�  is called the cotangent space at	0; it is isomorphic 
to the dual ��∗���, of ��	�M�. Observe that if 
�=	06� ∘ 8, as 

� 9
9:;
���j =<�,= , the images of 
>,…,
�  in 12,�

�,� 	/	32,�
�,� 	are the 

dual of the basis � 9
9:@
��, … , �	

9

9:�
��  of ���M�.  Given any 


,– function C , on � , we denote the image of f in 
T5∗�M�=12,�

�,� 	/	32,�
�,�  by DC�. Using the isomorphism between 
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12,�
(,) 	/	32,�

(,) , and ( 12,�
(,) 	/	32,�

(,)  ) **described above, DC� 
corresponds to the linear map in T5∗(M) . We see 
that(E
>)�,…, (E
�)� is a basis of	T5∗(M). [8] 

1.2. Formal Definition of Cotangent Space 

The Cotangent Space T5∗(M)  of a manifold at 	0 ∈�  is 
defined as the dual vector space to the tangent spaceT5M. A 
dual vector space is defined as follow ∶  given an � − 
dimensional vector space G, with basis	H�, I=1, 2, 3,…,�, the 
basis J=  of the dual space 	G∗  is determined by the inner 
product. < H� , J= >= <=� . When we take the basis 

vectors 	H� = 9
9:;

for T5∗(M) , we write the basis vectors 

for	T5∗(M), as the differential line elements, J==E
= , the inner 

product given by 〈 9
9:;
, D
=〉 =<=� . Now consider the vector 

field G  = K� 9
9:;

, and the covector field �=K�E
= , under 

general coordinate transformations � → �` (�),G  and 	�  are 

invariant, E
=`=	
N:`O
N:;
D
�‘

9
9:;

`=
9:O
9:;

`
9
9:O

. [10] 

1.3. Lemma 

The differential D ∶ 12,� → T5∗(M)  is derivation; it is a 
linear map for real vector spaces satisfying the Leibniz 
rule ∶ 	D (∅ .Q ) = 	D∅ .Q+∅ .EQ,  where , ∅ .DQ=DQ. ∅,	 is the 
cotangent vector represented by:R ↔ ∅ (R). (Q(R)−Q (0)). 

Proof: 
We want to show that 	D∅.Q  (0) +∅  (0).DQ − E  (∅.Q ) 

vanishes. It is represented by: 
(∅T − ∅  (0 )).QU  +∅T .(QU–Q(0)) −(∅T. Q − ∅(0).Q  (0 ) ∈Jp, 

which upon collecting terms, is equal to(∅T − ∅(p)). (QU −
Q(0))∈J2

p and hence represents zero in	T5∗M=Jp/J
2

p. In order 
to relate the cotangent space. [3] 

1.4. Example 

Consider a functionC: 3> × 3> → �>  given byC (J�W ,J�∅) 
=│3−J�W − J�∅│=X11 − 6 cos [ − 6 cos ∅ + 2 cos([ − ∅) , 
and so expressed in the basis of the angle charts the 
differential is, 	DC  ( J�W , J�∅ ) = (3 sin [ − cos∅ sin [ +
sin∅ cos [)D[ + (3 sin ∅ − cos [ sin ∅ + sin [ cos ∅)D∅/
C(J�W,J�∅). [4] 

2. Fiber Bundles 

2.1. Definition 

A differentiable fiber bundles is a fiber bundles 
(H,&,`,a,b, �), for which∶ 
c. & is an � −dim –differentiable manifold. 
d. ` is e −dim –differentiable manifold. 
f. H is (e+ �)−dim− differentiable manifold. 
D. a:	H → &	I�	c	
h map, of rank �	every	where. 
J. b	is	a	collection	of	diffeomorphism.	
C. �	is	a	Lie	group	which	acts	differentially	and	effectively.	
(n: ` → ` , n ∈ �	I�	c	
 ∞map). For a 
 ∞ manifold, the 

tangent, cotangent and the normal frame bundles are all 

differentiable fiber bundles. [7]	

2.2. Remark (Restriction of Fiber Bundles) 

If (H ,	� ,	` ,	R  ) is a 
,  – 	`bundle over� , o ⊆ �  is an 
open sub setand Hq≔Rs>(o), then (H,�,`,R ∕ Hq) is a 
, –
	` bundle over	o. [1] 

3. The Cotangent Bundles of Fiber 

Bundles 

3.1. Definition 

The Cotangent Space to a manifold � at a point 	0, T5∗M. 
Let us now define a fiber bundles over the space 	& = �. The 
fiber is F=T5∗(M)∽��∗ , and the total space is H=T∗(M)= 
�� ∈ T5∗(M) . (It is always true that the total space is the 
union of the fibers above each point). This space is called the 
cotangent bundle of 	�. The projection a ∶ H → &, becomes∶
Τ*(�	) →�, defined by∶ G ∈ Τ*(�) = 0.	Next we must give 
a homeomorphism, ∅w : as>  ( Kw ) → Kw⊗� n*. This is 

provided by the local coordinate on K⍺. If 	0 ∈ K ⍺ and its 
coordinate s are 
 i (0) ∈ � n, then a cotangent vector 	y ∈
T5∗	(M	)	 is an element of as> (K⍺), and its can be represent 

as. V=	c�(
 (0)) 9
9:;

. This procedure defined a map, y = (0, 

c�(
 (0)). Which maps 	as> (K⍺) → K⍺⊗�n*. If we have two 

different coordinate systems, then we have in K⍺∩K ∶ G  at 
0→0 (c� (0)), coordinate 
� →0 (d� (0)), coordinate z� . [12] 

3.2. Definition 

The Cotangent Bundles	Τ*(�). is the space of position and 
moment H = {
,0; 
 ∈ �, 0 ∈ T{∗	(M)}. This | = � and :̀= 
T{∗	(M), with 

a=Τ*(�) →�, (
, 0) 	→ 
                     (1) 

A fiber bundle has more structure since the fibers ` must 
lie in side H in a special way which is locally a product. We 
define it as a quintuple {H, a, |, `, �} consisting of: 

a) A manifold	H, projection map π, basic space	|, fiber ` 
together with a structural group � of diffomeomorphism 
of ` acting on the left. 

b) An atlas of charts, a covering	of	|  by open sets	K i, 
where ∅ ∶ as>  ( K� ) → K� × `  (2). Where , ∅� 	(0) 	=
	{a	(0), n� 	(0) }, 0 ∈ as> (K� ) (3). Andn� 	 ∶ as>  (K� ) 
→`. (4). Moreover, if we define the restriction. 

n�(
) =n� ∕ :̀. Then n�(
) ∶ :̀→` is a left action of	� on 
`. [16] 

3.3. Definition 

A map (or morphism) of fiber bundle ( >̀, H>, |>) → ( �̀, 
H� , |� ), is a pair of base point preserving continuous 
maps.	∅ ∶ H>→H� and ∅ ∶ |>→|� making the following. 
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Figure 1. Map of Fibrations. 

Notice that such a map of fibrations determines a 
continuous map of the fibers ∅� ∶ >̀→ �̀ . A map of fiber 
bundles. ( >̀, H>, |> ) → ( �̀ , H� , |� ) is an isomorphism if 
there 

Is an inverse map of fibrations. 
∅s> ( �̀ , H� , |� ) → ( >̀, H>, |> ) so that 	∅� ∘ ∅s>=∅s> ∘

∅�=1. 
Finally, we say that fibration ( `, H, | ) is trivial if it 

isomorphic to the trivial fibrations	| V ` → |. [7] 

3.4. Some Examples 

a) The projection map & V `→&  is the trivial fibration 
over & with fiber	`. 

b) Let	exp ∶ � → 3> be given by exp(%� =J���� ∈ 3>. Then 
exp is locally trivial fibrations with fiber the integers	�. 

c) Recall that the n- dimensional real projective 
space	�0� is defined by	�0� =3�/o, where	
~ 	 
, for 

 ∈ 3�⊂���>. Let 

0 ∶ 3� →�0�be the projection map. 
This is a locally trivial fibrations with fiber the two points 

set. [9] 

3.5. Theorem 

Let (H, |, `, 0) be a locally trivial fiber space whose total 
space and base space are path –connected and &  a path- 
connected topological space. For the mapping.∅: & → |  to 
have a lift �	 satisfying the condition (
�) =J�, where
� ∈
&,J� ∈ H, 0 (J�) =d0=(
�), it is necessary that∅� (πn (&, 
�)) 
⊆0� (an (H,J� )) (3. 5). For	c��	� . 	1. 

Proof: 
If such a lift �	 exists, then diagram is Commutative. using 

factors of homology groups, we obtain the commutative 
diagrams (for all	� . 1) 

 
Figure 2. From which the required inclusions follow easily. [18] 

3.6. Example 

For each smooth �-dimensional manifold	�, the cotangent 
bundles T∗M, is a vector bundle (Τ*�,�, �n*,R). [14] 

3.7. Definition of Principal Bundles 

Let � be a lie group� ∈ o⋃	~∞�. A 
, 	principal bundles 
is a quintuple (0,�, �, R�, where:	0 V �→0 is a 
, 	right at 
action with the property of local triviality: Each	point	e ∈ � 
has an open neighborhood 	�  for which there exists a 

,–diffeomorphism. 
8� : 	K V � → Rs> ( K ), satisfying R o 8� u 0�  and the 

equivariance property.8� (K ,n, � ) = 8�  (K, n ). 	� , forK ∈
�, n, � ∈ �. [6] 

3.8. Example 

The Cotangent Bundle�Τ*� contains the following classes 
of Lagrangian submanifolds; The fibers of	Τ*� . Let 
 ∈ � 
and let I; T{∗Q → Τ*� be the natural inclusion mapping. Since 
�:∗�  has half the dimension of Τ*� , it is enough to show 
isotropy. For �∈Τ*� and & ∈ ��(T{∗Q	�, we find �I∗[�� 	�&� u
[� (���I`&� u〈I (� ),a�`I` (
 )〉 =0. Thus I∗[	= 0. In bundles 
coordinates the proof is even simpler: Since R i is constant 
along �:∗�, we obtain I∗(D0�∩DR�) =0. [7, 11] 

4. Hamiltonian Dynamics on Cotangent 

Bundles 

4.1. Definition 

Let	� be the configuration space of a classical system with 
regular Lagrangian	�, �� the velocity phase space and �*� 
the momentum phase space. The Legendre 
transformation. 	�: �� → �∗�,  to make the transition from 
the Lagrangian to the Hamiltonian formula	� x. The 
Lagrange equation can be characterized invariantly on	�� as 
the differential equations for the integral curves of the vector 
field X�	 defined dz	D�	=	
�	┘�	c, where �	c =�∗(�), and 
�� u 	�f 	 �	 u 	��� 	 f�.  Our goal now is to reformulate 
these equations on Τ*�. �15� 

4.2. Definition 

Two fundamental aspects of Hamiltonian dynamics that is 
central to both the canonical quantization scheme and 
geometric quantization are the Poisson bracket and the 
related Lie algebraic structure of	
∞ 	  function on 	�∗� . 
Let	�  denoted a differential form and &  a smooth vector 
field on�∗�. From differential geometry we have following 
general formula that relates the exterior derivative operator d, 
the Lie derivative operator	�&, and the (left) hook product 
⏌:	�&	� � 	u &⏌D	� � 	\ D	�&⏌ 	) (5) [6] 

4.3. Definition 

The set of all locally Hamiltonian vector fields on�∗� is 
denoted by, � G ≡ � G (�∗�), and the set of Hamiltonian 
vector fields on �∗�	is denoted by:  G ≡  G (�∗�) [13] 
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5. Splitting of Cotangent Bundles 

5.1. Definition 

Let � ⊂ |	be the nilpotent radical of |.	Let | ⊂ 0	b  a 
(standard) parabolic subgroup with the nilpotent radical	�� 
and the component ��	containing	�; so opposite parabolic 0. 
We denote the Lie algebras of	�, 0, |, �, �,�� , L5 , by the 
corresponding Gothic characters 	g, 0, d, %, K, K� , �� , 
respectively. By a volume form on a smooth variety	&, we 
mean now here vanishing differential form top degree on	&. 
[5]. 

5.2. Definition 

A differential 1-from [ ∈ Ω>(o) is called an exact 1-form 
if there exists a smooth functionn:	o → �, such that[ = Dn. 
The notation for cotangent vectors. Leto = �,  and [  a 1-
form on	o given in local coordinates by	[�=ℎ	(%)	D%,	which 
can be identified with a function h. The notation makes sense 
because	[  can be integrated over any interval [c, d] 	⊂
�:	 £ [[c, d] ≔ £ ℎ(%)D%.¤

¥  Let � = �,  and consider a 
mapping			C:�	 = 	� → o = �,  which satisfies 
	C`(%)˃0.		Then	% = C(�)  is an a appropriate change of 
variables.	Let	[f, D] = C([c, d]),	then: 

£ C∗[ = £ ℎ'C(�))C`(�)D� = £ ℎ(%)D% = £ [ [c, d]
¤
¥

N
¨ 		   (6) 

which is the change of variables formula for integrals. [7] 

5.3. Example 

If C(
, z)  = 
�z cos 
 on ©�� , then DC  is given by the 

formula DC	 = 9':ª« ¬­®:)
9:

D
 + 9':ª« ¬­®:)
9«

Dz 

= (2
z cos 
 ─
2z sin 
) D
+
2cos 
 Dz. [2] 

5.4. Slice Theorem 

Let   be a Lie subgroup of a Iie group	�, and	3  a 
manifold on which   acts. Consider the following two left 
actions on � × 3: 

The twist action of  :	ℎ. (n, �)  = (nℎ -1, ℎ. �),  the left 
multiplication of	�:	n`. (n, �) = 	 (n`n, �). these are easily 
seen to be free and proper. The twisted product � ×  ° is the 
quotient of � × 3 by the twist. It is a smooth manifold; in 
fact � ×  ° → �/  is the fiber bundles associated with the 
principal bundles 	� → �/  via the H on S. The left 
multiplication commutes with the twist and descends to a 
smooth on G×  ° , namely n`. [n, �] = [n,` n, �]	 . Now 
consider a G on a manifold. 	�J%	± ∈ � , with isotropy 
subgroup 	 = �² . A tube for the	�  action at ±  is a 
� −equivariant diffeomorphism from some twisted product 
� ×  °  to onopen neighborhood of ±in�, that maps	[J, 0]H 
to ±. The	space	o  may be embedded in	� ×  °  as 
{[J, �] : � ∈ 3}; the image of the latter by the tube is called a 
slice theorem. A slice theorem (or tube theorem) is a theorem 
guaranteeing the existence of a tube under certain conditions. 
[12]. 

6. A Cotangent Bundles Hamiltonian 

Tubes Theorem and Its Applications in 

Reduction Theory 

In this part we study the symplectic geometry of cotangent 
–lifted action induced by a smooth proper action of a Lie 
group on a smooth manifold. Symplectic manifolds have 
their origin in the geometric for Hamilton’s and Lagrange’s 
equations of classical mechanics, where symmetries is the 
main tool that can be used to simplify the equations of 
motion. This model is known as the Hamiltonian tubes; it the 
basis of almost all the local studies concerning Hamiltonian 
of Lie groups on symplectic manifolds. It is applications has 
been limited by the fact the proof is no constructive. In the 
first part of thesis we are going to study Hamiltonian tubes 
when the symplectic manifolds is a cotangent bundles. In the 
concrete case of cotangent bundles there is a strong 
motivation coming from geometric mechanics and geometric 
quantization that makes it desirable to obtain explicit fiber 
local models. The first work studying symplectic normal 
forms in the specific case of cotangent bundles. 

6.1. Regular Cotangent Bundles Reduction 

The symplectic reduction of the cotangent bundles�∗Q has 
more structure than a symplectic manifold. In this we recall 
the results that characterize the reduced space as a subset of a 
certain cotangent bundles. [17] 

6.2. Theorem (Regular “Point’’ Cotangent Bundles 

Reduction at Zero) 

Let �  act freely and properly by cotangent lifts on �∗Q, 
and let Jbe the momentum map of the G action (with respect 
to the canonical symplectic form on�∗Q. Leta³ :	� → �/� is 
projection. Define the map, 	∅ : ´s> (0) → �∗(�/�)  by, for 
every	0 ∈ �µ∗Q. Then ∅isc�, invariant surjective submersion 
and descends to a symplectic homeomorphic. The left –hand 
side has the reduced symplectic form corresponding to the 
canonical symplectic form onT∗Q , and T∗(Q G⁄ )  has the 
canonical symplectic form. The map	∅  is a sort of push-
forward, though a³ is not injective. Note that	∅ is “injective 
mod	�’’, meaning that ∅(±1) =∅(±2) if and only if	±>=n. ±� 
for some n ∈ �. [12] 

7. Results 

The first result of the theory in cotangent bundles 
reduction, the theory developed for the problem with a single 
or bit type playing an important role in the solution to the 
general problem of a singular cotangent bundles reduction for 
base manifolds, Hamiltonian tubes when the symplectic 
manifolds is a cotangent bundles, in the concrete case of 
cotangent bundles there is a strong motivation coming from 
geometric mechanics and geometric quantization that makes 
it desirable to obtain explicit fiber local models and the first 
work studying symplectic normal forms in the specific case 
of cotangent bundles. 
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8. Conclusion 

Conclude that the theory of reduction of cotangent bundles 
developed playing an important role in solution of the 
general problem for reduction a single or bit type cotangent 
bundles for base manifolds and found that the phase space is 
the cotangent bundle�	T∗Q of a configuration space �. 
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