
 
American Journal of Mathematical and Computer Modelling 
2021; 6(2): 35-42 

http://www.sciencepublishinggroup.com/j/ajmcm 

doi: 10.11648/j.ajmcm.20210602.12 

ISSN: 2578-8272 (Print); ISSN: 2578-8280 (Online)  

 

Radial Basis Functions Based Differential Quadrature 
Method for One Dimensional Heat Equation 

Kedir Aliy
1, *

, Alemayehu Shiferaw
2
, Hailu Muleta

2 

1Department of Mathematics, Ambo University College of Natural and Computational Sciences, Ambo, Ethiopia 
2Department of Mathematics, Jimma University College of Natural Sciences, Jimma, Ethiopia 

Email address: 

 
*Corresponding author 

To cite this article: 
Kedir Aliyi, Alemayehu Shiferaw, Hailu Muleta. Radial Basis Functions Based Differential Quadrature Method for One Dimensional Heat 

Equation. American Journal of Mathematical and Computer Modelling. Vol. 6, No. 2, 2021, pp. 35-42. doi: 10.11648/j.ajmcm.20210602.12 

Received: March 28, 2021; Accepted: May 11, 2021; Published: May 26, 2021 

 

Abstract: In this paper, Radial basis functions based differential quadrature method has been presented for solving one-

dimensional heat equation. First, the given solution domain is discretized using uniform discretization grid point in both 

direction and the derivative involving the spatial variable, x is replaced by the sum of the weighting coefficients times 

functional values at each grid points. Next by using properties of linear independence of vector space and Multiquadratic radial 

basis function we can find all waiting coefficient at each grid points of solution domain and we obtain first order linear system 

of ordinary differential equation with N by N square coefficient Matrices. Then, the resulting first order linear ordinary 

differential equation is solved by fifth-order Runge-Kutta method. To validate the applicability of the proposed method, one 

model example is considered and solved for different values of the shape parameter ‘c’ and mesh sizes in the direction of the 

temporal variable; t and fixed value of mesh size in the direction of spatial variable, x. Numerical results are presented in tables 

in terms of root mean square (E
2
), maximum absolute error (E

∞
) and condition number K (A) of the system matrix. The 

numerical results presented in tables and graphs confirm that the approximate solution is in a good agreement with the exact 

solution. 

Keywords: Heat Equation, Shape Parameter, Multiquadric-Radial Basis Functions, Weighting Coefficients,  

Mesh-free Method 

 

1. Introduction 

Partial Differential Equations (PDEs) are mathematical 

equations that are significant in modeling physical 

phenomena that occur in nature. Applications of PDEs can be 

found in physics, engineering, mathematics, and finance. 

Examples include: modeling mechanical vibration, heat, 

sound vibration, elasticity, and fluid dynamics [7]. Although 

PDEs have a wide range of applications to real world 

problems in science and engineering, the majority of PDEs 

do not have analytical solutions. 

Traditionally, mesh-dependent methods such as the finite 

difference method (FDM), finite element method (FEM), and 

boundary element method (BEM) have been used to solve PDEs 

[16]. Despite their great success in the past decades in many 

branches of science and engineering, these mesh-based methods 

require meshes or grids as the solution domain. The costs and 

difficulties in creating quality meshes, however, constitute one 

of the major bottlenecks in these methods [17]. However, may 

be the complications of these methods include a slow rate of 

convergence, spatial dependence, instability, low accuracy, and 

difficulty of implementation in complex geometries [16, 18]. 

But scientists in the field of computational mathematics 

have been trying to develop numerical methods by using 

computers for further application [18]. One of those 

numerical methods is differential quadrature method. The 

differential quadrature method (DQM) was introduced by 

Richard Bellman and his associates in the early of 1970s 

following the idea of integral quadrature [19, 14]. The DQM 

are able to produce the accurate result using only a small 

number of grid points. They are mesh-based methods. 

Furthermore, the distribution of the nodes has limitations, 
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and they must be clustered near the boundary and hence 

limits its usefulness [16]. 

However, mesh-less approximation techniques using radial 

basis functions (RBFs) have been developed over the last 

several decades. These methods are easy to implement, 

highly accurate, and truly mesh less, which avoids 

troublesome mesh generation for high-dimensional problems 

[20]. These methods are called radial basis function based 

differential quadrature methods [20]. Shu et. al. Solved 

partial differential equations by a global radial basis function-

based differential quadrature method. 

In recent decades, various RBFs-based methods have gained 

fast growing attention from abroad range of scientific 

computing and engineering applications such as multivariate 

scattered data processing, numerical solutions of PDEs, and 

machine learning [3]. Franke in 1982 [9] extensively tested 29 

different algorithms on the typical benchmark function 

interpolation problems, and ranked the Multi-quadric Radial 

Basis Function [21] (MQ-RBF) and Thin Plate Spline Radial 

Basis Function (TPS-RBF) as two of the best candidates based 

on the following criteria: timing, storage, accuracy, and ease of 

implementation. Kansa (1990) first developed an RBF 

collocation scheme for solving PDEs of elliptic, parabolic, and 

hyperbolic types, in particular, using the MQ-RBFs. The 

methodology is now often called the Kansa method. The 

Kansa method is mesh less and has distinct advantages 

compared with the traditional methods: superior convergence, 

integration-free, and easy implementation. Mesh-less method 

are a class of numerical methods used for solving partial 

differential equations. In these methods, mesh generation on 

the spatial domain of the problem is not needed. This property 

is the main advantage of these techniques over the mesh 

dependent methods. Due to the wide range of the application 

of the one dimensional linear parabolic equation, several 

numerical methods have been developed. 

Benyam Mebrate [1] presented Numerical solutions of a 

one-dimensional heat Equation together with initial condition 

and Dirichlet boundary conditions of the form: 2
t xxu uα= . 

He presented computation of the numerical solutions by 

using two methods: Finite difference, and Finite element 

methods. The finite element methods are implemented by 

Crank-Nicolson method. This method does not always 

converge to the exact solutions for coarser step lengths. He 

got the accurate approximate solution with the length of 

time-step k=0.001 on0 < t <1. The method applied is not 

efficient as it requires longer CPU time and large memory 

size. Hooshmandasl et al., [10] used Chebyshev Wavelets 

Method to obtain a numerical solution of the one-

dimensional heat equation. They applied different wavelet 

families and the wavelet coefficients were calculated by the 

Galerkin collocation method. Generally, they developed 

Chebyshev wavelet method with operational matrices of 

integration for solution of one dimensional heat equation 

with Dirichlet boundary conditions which is fast, 

mathematically simple and guarantees the necessary accuracy 

for a relatively small number of grid points. This confirms 

that the method is not accurate for a relative large number of 

grid points and is difficult to apply for high dimension 

geometric spaces. In their work, Greengard and Li [12] also 

developed an explicit method for solving inhomogeneous 

heat equation in free space, following the time evolution of 

the solution in the Fourier domain. The error in the solution 

is simply the quadrature error in evaluating the solution and 

the solution is dependent on the full time-space history of the 

diffusion process with the time-step k=0.0025 and they got 

accurate solution for finer spatial step-length and time step. 

So, the method has required high cost regarding to storage 

capacity in the computational domain. 

Kalyanil and Rao in [11] solved one-dimensional heat 

equation by using double interpolation. They used finite 

difference method for double interpolation method to solve one-

dimensional heat equation, but the method gives better accuracy 

only for small step length and is difficult to compute the solution 

in complex computational domain. Even though the accuracy of 

the aforementioned methods is promising, they require large 

memory and long computational time. Besides, the methods are 

not suitable for higher dimensional and problems involving 

complex geometries. So, the treatment of the mesh-size presents 

severe difficulties that have to be addressed to ensure accuracy 

of the solution, and efficiency of the method applied. 

Tatari and Dehghan [15] solved heat equation using radial 

basis functions. They applied the Gaussian radial basis 

functions for obtaining solution of heat equation. The 

solution diverges when shape parameters are: 0.5, 1, and 2. 

As compared to the exact solution, the approximate solution 

needs further improvement. To this end, the aim of this paper 

is to construct efficient and accurate numerical method for 

solving one-dimensional heat equation. 

2. Preliminaries 

2.1. Differential Quadrature Method 

Differential quadrature method is one of the most efficient 

numerical methods to solve partial differential equations 

[18]. Different differential quadrature methods were 

developed by Bellman R. and Castiin 1971 as cited in [19]. A 

variety of methods have been developed based on the DQ 

method, including the polynomial-based differential 

quadrature (PDQ) and the Fourier-expansion-based 

differential quadrature methods (FDQ) [19] The basic idea 

behind the DQ method is to determine the weighting 

coefficients for any order derivatives by using a weighted 

sum of functional values at a set of selected grid points [5]. 

PDQM and FDQM are highly efficient method by using a 

small number of grid points, they are not efficient when the 

number of grid-points is large and they are also sensitive to 

grid point distribution. While the PDQ and FDQ methods are 

able to obtain accurate results using only a small number of 

grid points, they are mesh-based methods [8, 16]. 

To overcome the limitations for the applications of DQ 

method, a new class of methods called mesh-free methods 

has surfaced. Each class of methods offers numerous and, in 

many ways, complementary benefits. In the ideal case we 
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seek a method defined on arbitrary geometries that behaves 

regularly in any dimension, and avoids the cost of mesh 

generation. The ability to locally refine areas of interest in a 

practical fashion is also desirable. Fortunately, mesh-free 

methods provide all of these properties: based wholly on a set 

of independent points in n-dimensional space, there is 

minimal cost for mesh generation, and refinement is as 

simple as adding new points where they are needed. A subset 

of mesh-free methods of particular interest to the numerical 

modeling community today revolves around Radial Basis 

Functions (RBFs). This method is called radial basis function 

differential quadrature method (RDQM). RBF methods are 

based on a superposition of translates of these radially 

symmetric functions, providing a linearly independent but 

non-orthogonal basis to interpolate between nodes in n-

dimensional space [2]. 

2.2. Radial Basis Function 

Definition 2.2.1 A function :
dφ ℜ → ℜ is called radial if 

there exists a univariate function [ ): 0,ϕ ∞ → ℜ such that 

( ) ( )x rφ ϕ= where r x=  and •  is a norm in
dℜ  

( • is typically the Euclidean norm). 

A radial basis function ( )rϕ is a one-variable, continuous 

function define for 0r ≥  that has been radialized by 

composition with the Euclidean norm on
dℜ . RBFs may 

have a free parameter, called the shape parameter, denoted by 

c. RBFs are a class of radially symmetric functions 

symmetric about a point jx  called the centres. It is given in 

the form of 

( ) ( ( ))x r xφ φ=  

Here, the value of the univariate function ϕ  is a function 

of the Euclidean distance from the canter of point jx  and 

( )r x  is given by: ( )2
( )j j jr x x x x x= − = − in one 

dimensional space (Chenoweth, 2012). RBFs are a powerful 

tool in interpolating multivariable functions or approximation 

solution of partial or ordinary differential equations. 

The most popular radial basis functions are: 

i. Multiquadric RBF:
2 2( )j jr r cφ = +  

ii. Inverse Multiquadric RBF: 
2 2

1
( )j

j

r
r c

φ =
+

 

iii. Gaussian RBF: 
2( )

( ) jcr

jr eφ −=  

iv. Thin plate spline RBF: 
2( ) ln( )j j jr r rφ =  

These radial basis functions (except TPS) are parametric 

functions with shape (control) parameter c. They are smooth 

and continuously differentiable functions. Except the 

Multiquadraic RBF, interpolation matrices of these radial 

basis functions are positive definite, but the interpolation 

matrices for Multiquadraic is conditional positive definite 

[4]. The RBFs are usually divided into global and local 

support RBFs. It is said to be global support if the 

lim ( )j
r

rφ
→∞

= ∞  and local supporting if the lim ( ) 0j
r

rφ
→∞

= [7]. 

The global approach uses information from every center in 

the domain to approximate a function value or derivative at a 

single point. In contrast, the local method only uses a small 

subset of the available centers [4]. 

For given data ( . )j jx f the smooth function p defined by 

enforcing that ( )j jp x f= . Therefore, for any scattered set of 

point N with center jx the radial basis interpolation function 

is given as: 

( )
1

( )

N

j j j

j

p x x xα φ
=

= −∑  

By enforcing the interpolation condition ( )j jp x f= , we 

determine the coefficients jα from NxN matrix for

1,2,3,...,j N= . The choice of the basic functions will 

determine which methods are available for solving system of 

interpolation and whether such a solution even exists. If the 

interpolation matrix is symmetric positive definite, then the 

linear system has a unique solution [14]. 

3. Description of the Method and Results  

3.1. Description of the Method 

Consider the one dimensional heat equation of the form: 

t xxu uα= , ( , ) ( , ) (0, ]x t a b T∈ ×                      (1) 

Subject to initial condition: 

( ) 1, 0 ( )x f x=u , a x b≤ ≤                     (2) 

and boundary conditions 

1 2( , ) ( ), (1, ) ( )u a t g t u t g t= = , 0 t T≤ ≤            (3) 

Here, 1( )f x , 1( )g t and 2 ( )g t are continuous and 

differentiable functions. The computational domain

[ , ] [0, ]a b T×  is partitioned as: 

0 , 1, 2,...,ix x ih i M= + =  

0 , 1, 2,...,jt t jk j N= + =  

where h  and k are mesh-size of [0,1] and [0, ]T , 

respectively. 

3.2. Multiquadric Radial Basis Functions (MQ-RBFs) 

Multiquadric RBF was proposed by Hardy as cited by 

Ding et al., in [6] for the interpolation of topographical 

surfaces. It has very simple mathematical form as 
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( )2 2( )j jr x x cφ = − +  

where c  is a shape parameter and c >0. For time dependent 

problems, the multiquadric radial basis function is given by 

( ) ( ) ( )2 2( , ), ( , ) ( , ) ( , )j j jx t x t x t x t x x cφ φ= − = − + ,

1,2,...,j N=
                                         

(4) 

where N is the number of grid points in the direction of the 

spatial variable x , t  is the temporal variable. 

Definition -1: [4] A function ϕ is completely monotonic 

on [ )0,∞  if [ )0, ,Cϕ ∈ ∞ (0, ),Cϕ ∞∈ ∞ and ( )
( 1) ( ) 0

n n
rϕ− ≥

where 0r >  and 0,1, 2,...n =  

Theorem -1: [4] Let ( ) ( ) [ )0,r r Cϕ ϕ= ∈ ∞  and 

( ) 0rϕ > for 0.r >  Let '( )rϕ be completely monotonic on

[ )0,∞ , then for any set of N distinct center jx ,

1,2,3,...,j N=  the NxN  matrix B with entry 

( )kj k jb x xϕ= −  is invertible. Such function is said to be a 

conditional positive definite. 

MQ-RBF is an example of global infinitely differentiable 

and conditional positive definite function. 

Theorem -2: [13]. For a set of N distinct data points to be 

approximated by the set of N  approximation function φ and 

this function must be nonsingular. 

Therefore, by the above definition and theorems, the 

interpolation matrix resulting from MQ-RBFs is invertible, 

smooth, and continuously differentiable on its domain. Thus, 

the first and second order derivatives of multiquadric radial 

basis functions are given by: 

( )
( )2 2

j

x j

j

x x
x x

x x c

φ
−

− =
− +

                       (5) 

( )
( )2 2 3

[ ]

xx j

j

c
x x

x x c

φ − =
− +

                    (6) 

3.3. Approximating the Partial Derivatives and Determining 

the Weighting Coefficients 

From the primary idea of differential quadrature method, 

( ),xxu x t in Eq. (1) can be expressed as a linear combination 

of functional values at each grid points. It is given as: 

( )
1

, ( , )

N

xx i ij j

j

u x t w u x t

=

=∑ , 1,2,..., .i N=              (7) 

Here, ijw are the weighting coefficients. Since ( ),x tφ  is a 

basis function for one dimensional space, every function 

defined on one dimensional space can be expressed as a 

linear combination of these basis functions using the 

properties of linear independence of vector in vector space. 

Now for any constant λ  and at least one of 0λ ≠ such that 

1

( , ) ( , )

N

j

j

u x t x tλ φ
=

=∑ , 1( )i N N=
.
                    (8) 

Since ( , )x tφ = ( ) ( ) 2 2( , ), ( , ) ( , ) ( , ) ( )j j jx t x t x t x t x x cφ φ= − = − + the 

first and second order derivatives of Eq. (8) become 

( )
1

( , )

N

x i j x j

j

u x t x xλ φ
=

= −∑ , 1,2,3,...,i N=                (9) 

( )
1

( , )

N

xx i j xx j

j

u x t x xλ φ
=

= −∑ , 1,2,3,...,i N=           (10) 

Substituting Eqs.(8) and (10) into Eq. (7), we get: 

( )
1 1 1

( , )

N N N

ij xx j ij ij

j j j

x x w x tλ φ λ φ
= = =

− =∑ ∑ ∑               (11) 

( ) ( )
1

N

xx j ij j

j

x x w x xφ φ
=

− = −∑                     (12) 

From Eq. (12) we have the following system of equations: 

Aw b= ,                                     (13) 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 1

2 1 2 2 2

1 2

N

N

N N N N

x x x x x x

x x x x x x
A

x x x x x x

φ φ φ

φ φ φ

φ φ φ

 − − −
 
 − − −

=  
 
 

− − −  

⋯

⋯

⋮ ⋱ ⋮

⋯

 

( )
( )

( )

1

2

xx i

xx i

xx i N

x x

x x
b

x x

φ

φ

φ

 −
 
 −

=  
 
 

−  

⋮

, and

1

2

i

i

iN

w

w
w

w

 
 
 =
 
 
 

⋮
 

Since φ  is global support RBFs it produces a dense matrix 

A. By theorems 1 and 2 the matrix A is conditional positive 

definite and non-singular. Therefore, the system in Eq. (13) 

has a unique solution. The condition number of A is 

calculated as 

1

2 2
( )A A Aκ −=                         (14) 

For large number of ( )Aκ , the system in Eq. (13) is ill-

conditioned. This is because of the presence of shape 

parameter“ c ”that affects both the condition number of the 

interpolation matrices A  and the accuracy of the method. For 

a fixed number of interpolation points N, the condition 

number of A depends on the shape parameter c  and support 

of the RBFs [22]. Also, the condition number grows with N

for fixed value of the shape parameter c [15]. 
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Now the weighting coefficients (w) can be obtained from 

linear system of equation given in Eq. (13) by using 

Gaussian-Elimination method. In thiscase, the augmented 

matrix is written as 

[ ]

1
11 12 1

2
21 2

1 2

22
:

N xx

N xx

N
N N NN xx

A b

φ φ φ φ

φ φ φ φ

φ φ φ φ

 
 
 =  
 
 
 

⋯

⋯

⋮ ⋮ ⋯ ⋮ ⋮

⋯

                  (15) 

where ( )ij i jx xφ φ= −  and ( )
i
xx xx ixφ φ=  for , 1(1)i j N=  

By row operation, the augmented matrix is changed to the 

upper triangular matrix. 

1
11 12 1

2
22 20

:

0 0

c
N xx

c c c
c c N xx

c Nc
NN xx

A b

φ φ φ φ

φ φ φ

φ φ

 
 
   =   
 
 
 

⋯

⋯

⋮ ⋮ ⋯ ⋮ ⋮

⋯

                  (16) 

Now, we can calculate the weighting coefficients using 

backward substitution. 

The 
thN weighting coefficient Nw  can be obtained by 

using the formula: 

Nc
xx

N c
NN

w
φ
φ

=                                    (17) 

The ( )1
th

N − weighting coefficient 1Nw − can also be 

obtained by using the formula: 

1

1

1 1

N c Nc
xx xx N

N c
N N

w
w

φ φ
φ

−

−
− −

−
=                             (18) 

Generally, the 
thi weighting coefficient can be obtained by 

using the formula: 

1

N
i c
xx ij j

j i

i c
ii

w

w

φ φ

φ
= +

−

=
∑

                             (19) 

for 2, 3,..., 2,1i N N= − −  

Then, the coefficient vector ( )iw  can be used to 

approximate the second-order derivative in the x-direction 

for unknown smooth function at 
thi nodes. From the 

procedure of DQ approximation of derivatives, it can be 

observed that the weighting coefficients are only dependent 

on the selected RBFs and the distribution of the supporting 

points in the local support [6]. 

3.4. Results and Discussion 

From Eqs. (1-3), (8), (10) and (12), the resulting system of 

initial-boundary value problem is given as: 

1

2

( , )
( , )

N
i

ij j

j

du x t
w u x t

dt
α

−

=

= ∑ , 1(1)i N=                 (20) 

Subject to initial condition 

1( ,0) ( )i iu x f x= , ,ia x b≤ ≤                             (21) 

and boundary conditions 

1 1 2( ) ( ), ( ) ( ),0Nu t g t u t g t t T= = ≤ ≤                  (22) 

3.5. Criteria for Investigating the Accuracy of the Method 

The root Mean Square (RMS) error (
2E ), maximum 

absolute error ( E∞
) are used to measure the accuracy of the 

method. The RMS error and maximum absolute error are 

calculated as follows in [15], 

22

1

1
( , ) ( , ) , 1(1)

N

i j i j

k

E U x t u x t i N
N =

= − =∑ ,    (23) 

1

( , ) ( , ) ,max i M i M

i N

E U x t u x t∞

≤ ≤

= −               (24) 

Here, ( , )i MU x t  and ( , )i Mu x t  are the exact and 

approximation solutions of Eqs.(1), (2), and (3), respectively. 

3.6. Numerical Experiments 

Example1: Consider the classical heat equation considered 

by Dehghan &Tatari, in [15], 

t xxu u= , 0 1x< < , 0 t T< ≤ , 

with initial condition 

( ,0) sin( )i iu x xπ= , 0 1ix≤ ≤  

and boundary conditions 

(0, ) (1, ) 0u t u t= = , 0 t T≤ ≤ , 

The exact solution is given by: 

2
( ) sin( ) exp( ),i iU x x tπ π= −  

The numerical results are presented in tables in terms of
2 ,E E∞

 and ( )AΚ as the means for measuring the accuracy 

the present method. 
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Table 1. Point wise absolute error, root mean square error, and Condition Number of example1 when h=0.1, 1T = and t∆ = 0.01. 

Our Method 

Shape parameter c 2E  E∞  ( )A sκ  

0.5 3.2888E-01 3.3052E-0 4.0762E+07 
1 6.2787E-02 6.3100E-01 1.0457E+12 

2 1.5974E-02 1.6054E-01 8.0464E+16 

3 7.2063E-03 7.2422E-02 2.6283E+17 
4 4.0799E-03 4.1003E-02 6.4077E+16 

5 2.6197E-03 2.6327E-02 2.9761E+17 

6 1.8226E-03 2.6327E-02 3.5931E+17 
7 1.3405E-03 1.3472E-03 7.3104E+17 

 

Tatari, M. and Dehghan, M., 2010 

Shape parameter c 2E  E∞  ( )A sκ  

0.5 9.0651E+39 7.0000E+73 1.9676E+19 

1 3.3136E+17 2.0000E+29 2.0434E+17 

2 5.0227E+1 5.0001E+0 9.3751E+17 
3 1.0196E-01 7.1266E-03 6.6616E+17 

4 1.0384E-01 7.4346E-03 4.0811E+17 

5 1.0400E-03 7.6029E-03 1.1529E+16 
6 1.0150E-03 7.5571E-03 1.4832E+16 

7 9.5715E-03 7.3241E-03 3.0267E+15 

Table 2. Point wise absolute error, root mean square error and Condition number of example1 when h=0.1, 1T = and t∆ = 0.025. 

Our Method 

Shape parameter c 2E  E∞  ( )A sκ  

0.5 1.7625E+01 1.1286E+02 4.0762E+07 

1 3.3389E-01 3.3556E-00 1.0457E+12 
2 7.5336E-02 3.3389E-01 8.0464E+16 

3 3.0695E-02 1.9655E-01 2.6283E+17 

4 1.6767E-02 1.0736E-01 6.4077E+16 
5 1.0588E-02 6.7799E-02 2.9761E+17 

6 7.3003E-03 4.6745E-02 3.5931E+17 

7 5.3403E-03 3.4195E-02 7.3104E+17 

Table 3. Point wise absolute error, root mean square error and Condition number of example1 when h=0.1, 1T =  and t∆ = 0.001. 

Our Method 

Shape parameter c 2E  E∞  ( )A sκ  

0.5 2.9601E-03 9.3653E-02 4.0762E+07 
1 1.3346E-03 4.2226E-02 1.0457E+12 

2 4.4049E-04 1.3937E-02 8.0464E+16 

3 2.0921E-04 6.6190E-03 2.6283E+17 
4 1.2064E-04 3.8168E-03 6.4077E+16 

5 8.1757E-05 2.5867E-03 2.9761E+17 

6 5.7186E-05 1.8093E-03 3.5931E+17 
7 4.2198E-05 1.3351E-03 7.3104E+17 

 

Figure 1. Profile of plotting graph of the Approximate versus Exact solution of example 1 for which c 4,  h 0.1, T 1= = = & 0.01t∆ = . 
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Figure 2. Surface graphs of example 1 showing the physical behavior of the one-dimensional heat equation when c 4,  h 0.1, T 1= = = & 0.01t∆ = . 

4. Discussion 

As depicted in Table 1, the present method is able to 

generate convergent numerical solution when c = 0.5, 1, and 

2 at which the method presented by Tatari and Dehghan, in  

[15] fails to produce convergent solution. The condition 

number of the system matrix of the present method is in the 

range 4.0762E+07 ≤ ( )Aκ ≤ 7.3104E+17 whereas the 

condition number of the system matrix presented by Tatari 

and Dehghan, 20103.0267E+15 ≤ ( )Aκ ≤ 1.9676E+19. Thus, 

the effect of the condition number on the accuracy of the 

numerical solution is more significant on the method 

presented by Tatari and Dehghan, than on the numerical 

solution of the present method. The value of E∞ in Table 1 

confirms this issue. That is the smaller the value of E∞ the 

less the effect of the condition number on the accuracy of the 

approximate solution. As it can also be seen from Tables 1-

Table 3, the condition number of the system matrix is kept 

constant for same values of the shape parameter c in each 

table. This is because the condition number is depends only 

on the step length the spatial variable and the shape 

parameter c. Comparison among Table 1-Table 3 shows that 

more accurate result is generated when t∆ = 0.001. This 

indicates that the present method is suitable for problems that 

require long time interval. 

The simulations presented in Figures 1 and 2 shows that 

the approximate solution obtained by the present method is in 

a good agreement with the exact solution. 

5. Conclusion 

In this thesis, RBFS-DQM is used to solve one 

dimensional Heat equation. First, the domain is discretized 

using the uniform step length and the derivative involving the 

spatial variable ’x’ is replaced by the sum of weighting 

coefficient times the functional value at each grid point via 

Multiquadraic radial basis functions. Then the resulting first 

order linear system of ODE is solved by fifth order Runge-

Kutta method. 

To validate the applicability of the method, one model 

example is considered and solved by varying the value of 

shape parameter c and time-step k, and keeping the step-

length h fixed. As it can be seen from the numerical results 

presented in tables and graphs, the present method is superior 

over the method developed by Tatari and Dehghan (2010) 

and approximates the exact solution very well. In a nutshell, 

the present method is conceptually simple, easy to use and 

readily adaptable for computer implementation for solving 

one-dimensional heat equation. 
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