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Abstract: This study explores quantile regression estimation technique and its practicality in regression analysis; hence we 

provide a comparative study in view of quantile regression as an alternative to the traditional ordinary least squares regression. 

Although the ordinary least squares (OLS) model examines the relationship between the independent variable and the 

conditional mean of the dependent variable, whereas the quantile regression model examines the relationship between the 

independent variable and the conditional quantiles of the dependent variable. Quantile regression overcomes various problems 

associated with OLS. First, quantile regression is defined and its advantages over ordinary least squares regression are 

illustrated. Also, specific comparisons are made between ordinary least squares and quantile regression estimation methods. 

Lastly, both estimation techniques were applied on a real life data and the results obtained from the analysis of two types of 

datasets in this study suggests that quantile regression provides a richer characterization of the data giving rise to the impact of 

a covariate on the entire distribution of the response variables as the effect can be very different for different quantiles. 

Quantile regression therefore gives an efficient and more complete view of the relationship amongst variables, hence, suitable 

in examining predictors effects at various locations of the outcome distribution. 
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1. Introduction 

Regression analysis is a cornerstone of statistical analysis 

which is concerned with describing the dependence and 

relationship between a response variable and one or more 

explanatory variables [12] with the view of estimating and or 

predicting the (population) mean or average value [10]. 

In Linear regression the regression parameters can be 

estimated using the ordinary least squares method which 

estimates regression parameters based on minimizing the 

sum of squared residuals (residuals are the difference 

between the observed response and the predicted response). 

The ordinary least squares regression method yields 

parameter ��	and ��  using �̅ to represent the mean value of 

the predictor variable, �� to represent the mean value of the 

response variable [8]. 

Inferences on ordinary least squares regression requires 

specific assumptions be made about the distribution of the 

error which are: normal ( 	
��
 � 	0
 , homoscedasticity 
�
��
 � 	��
, and uncorrelation (��������� � 0). Now, if 

one or more of the listed assumptions are violated the result 

and inference from the ordinary least square regression 

analysis can be impacted and becomes unreliable. 

Quantile regression (QR) fits in better when one or more of 

the listed assumptions are violated in the ordinary least square 

regression analysis [3]. This positions the question of 

relationship between the dependent variable and the 

independent variable at any quantile of the conditional 

distribution function and gives a complete information about 

the relationship between the response variable and the 

covariates on the entire conditional distribution function, and 

makes no distributional assumption about the error term in the 

model [6]. When the mean regressions are in fact significantly 

different, the quantile regression can suggest which part of the 

conditional distributions differ [7]. Quantile regression is 

similar to linear regression in that it is used to gain an 
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understanding of how a set of predictor variables are related to 

a continuous response variable [11]; however, there are several 

differences in the calculation, assumptions and interpretation 

when comparing quantile regression to linear regression. 

Koenker and Basset [9], introduced quantile regression as 

a robust alternative to the ordinary least squares as a way to 

model the quantile of a response variable, the median, 

conditional on a certain value of a set of predictors. As the 

quantile is estimated conditional on the set of predictors, it 

commonly referred to as the conditional quantile [1]. The 

quantile regression unlike the least squares method has the 

advantage of providing a detailed picture of the relationship 

between the covariates and the dependent variable. 

Hence, this study aims at bringing to the realization the 

importance of using quantile regression method in the 

analysis of data and also establish that quantile regression is 

an efficient alternative to ordinary least squares. 

2. Materials and Methods of Research 

Given the nature of most dataset in econometrics, 

biostatistics, etc., it is hence appropriate to find out which 

method of analysis is ideal to give a holistic understanding of 

the effect of covariates on the conditional distribution of the 

response variable. 

This study is interested in comparing the performance of 

ordinary least squares and quantile regression model in 

estimation technique. Two categories of datasets will be 

considered for analysis. The OLS technique and the quantile 

regression model will be used in the estimation process. 

2.1. Linear Regression 

Linear regression is used for special class of relationship, those 

that can be described by straight line [11]. Assuming a given 

dataset consist of dependent and independent variable and there 

exist a relationship between the dependent and independent 

variable then the general linear model can be of the form: 

��|�� �	�� + ���� + ��                        (1) 

where ��  and ��  are regression parameters, and indicates 

the mean response when ��= 0, and the change in the mean 

response associated with a one unit increase in the 

independent variable �� ,	respectively [8]. The error term is 

represented by �� and is defined as the difference from the 

population mean response, associated with the 

corresponding �� value, for the individual observation. The 

matrix form is given as: 

�� �	��� + ��                                (2) 

where � 
��, ��, … , ��
  ; � � 
��, ��, … , ��
� ; � �


��, ��, … , ��
� and � � 	�1 ���	���	 ⋯ ���	⋮ ⋯	⋯ 	⋯ ⋯	1 ���	���	 ⋯ ���	# 

OLS minimizes the square distance between the observed 

and the predicted dependent variable y: 

$
�
 � 	∑ 
�� − ����
�'�(� � 
� − ��
�
� − ��
       (3) 

Differentiating with respect to �	setting to zero, we realize 

that �)  satisfies 

���� � ���                                    (4) 

The OLS method of estimating �  can be estimated by �)	which is given by: 

�) � 
���
*����                               (5) 

The dependent variable can be predicted by �+ � 	����)  and 

the error term by 	��̂ �	�� − ����. ��̂  is the residual. Recall 

that errors are normally distributed with mean of zero 

constant variance and are uncorrelated. Also, observations 

are independently and identically distributed (IID) and there 

is a linear functional relationship between dependent and 

explanatory variables [2]. 

2.2. Quantile Regression Method 

A regression technique that requires a quantitative variable 

as the predicted variable and that accepts any type of 

predictor variable is quantile regression [13]. Quantile 

Regression presented by Koenker and Bassett [9] provides an 

alternative to ordinary least squares regression. Estimating 

conditional quantiles at various points of the distribution of 

the dependent variable will allow us trace out different 

marginal response of the dependent variable to change in the 

explanatory variables at these points [12]. The quantile 

regression model is given as: 

./0|12
3
 � 	��
4
 +	��
4
�� + ��
4
               (6) 

Here ��
5
  and ��
5
  represents the 367	  quantile of the 

response variable when x=0 and the change in the 367	 quantile 

for a one unit increase in the predictor variable, respectively. 

The matrix form is given as: 

�� �	��8�4 +	��4                           (7) 

with .9:;<4
��|��
 � 	 ��8�4  

where y is the dependent variable, x is a vector of regressors, � is a vector of parameters to be estimated and � is a vector 

of residuals. .9:;<4
��|��
  denotes the =67  regression 

quantile, 0 < = < 1	solves the problem below; 

.��4� = 	?@;A ∑ B|�� − ���4|C = ?@;B∑ =D�� − ���4D + ∑ (1 − =)D�� − ���4D�:/0F10A�:	/0G10A C�
�(�                (8) 

2.3. Goodness of Fit Using Pseudo R
2 

The simple quantile model with n independent variables is 

given as: 

./0|12(=) = 	��
(4) +	��

(4)�� +⋯+ ��
(4)��            (9) 
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The indicator of the goodness of fit for the model can be 

predicted with the Pseudo R
2 
as: 

H$I9J�	K5
� = 1 −	

LMNOP
�MONP

                          (10) 

where: 

KQRS4 =	∑ =D�� − �)�(=) − �)�(=)�� −⋯− �)�(=)��D	/0GATU(4)VAT2(4)10V⋯VATW(4)1W	   

+∑ (1 − =)D�� − �)�(=) − �)�(=)�� −⋯− �)�(=)��D	/0FATU(4)VAT2(4)10V⋯VATW(4)1W	                                   (11) 

and 

XQSR4 =	∑ =|�� − =+| + 	∑ (1 − =)|�� − =+|/0F4 	/0G4     (12) 

The value of KQRS4  (Residual Absolute Sum of 

Weighted) is always less than the value of the XQSR4  (Total 

Absolute Sum of Weighted) so that the Pseudo K4
� will range 

from 0 to 1. The closer the value of the Pseudo K� is to one, 

the better the model will be. However, the qualities of Pseudo 

K� can not be used to test the overall goodness of fit for the 

model, it can be used to test the merits of the selected 

quantile [4]. 

2.4. Mean Square Error (MSE) 

The parameter estimate obtained is said to be good if it has 

a small bias and small variance. Therefore, to see the 

goodness of estimating the parameters based on the bias and 

variance values simultaneously, represented in the value of 

the Mean Square Error (MSE) [5] given as: 

YS	 Z�)��=5�[ = �:\	 Z�)��=5�[ + 	]@:$ Z�)��=5�[
�
  (13) 

where: 

YS	 Z�)��=5�[: value of MSE for 	@	 = 	1,2, … 	_	:;J	=5 =
=9:;<@`I	= = 1,2, … , a 

�:\	 Z�)��=5�[ : variance of selected quantile 

�:\	 Z�)��=5�[ = 	 �∑ 	(AT0�4b�)c*	(∑ 	(AT0�4b�))cW
de2

W
de2

�(�*�)  

]@:$ Z�)��=5�[: the value of the bias for selected quantile 

is obtained from the mean of the difference of the expected 

value and the estimated value or: ]@:$ Z�)��=5�[ =

	��∑ Z�)��=5�[ − Z���=5�[�
�(�  

3. Application, Analysis, Results & 

Discussion 

We present the analysis and discussion of the results 

obtained from two sets of data in order to validate the 

analytical power of Quantile Regression. Two linear models 

were used for analysis. R Studio software was used to 

analyze both datasets. 

Illustrative Data 1: Relationship between high blood 

pressure and body mass index of patients in the University of 

Calabar Teaching Hospital (UCTH), Cross River state. 

Dependent Variable (Y): High Blood Pressure. 

Independent Variable (X): Body Mass Index. 

From table 1, the Jarque Bera P-value, Y which is the 

dependent variable does not follow a normal distribution. To 

this regard, the information above provides the preliminary 

justification for engaging quantile regression. 

Table 1. Descriptive Statistics. 

 BMI BP 

Mean 1.313039 127.0196 

Median 1.285000 124.0000 

Maximum 2.390000 208.0000 

Minimum 0.810000 94.00000 

Std. Dev. 0.257839 18.18441 

Skewness 1.260221 1.406322 

Kurtosis 6.085016 6.740396 

Jarque-Bera 67.44732 93.08147 

Probability 0.000000 0.000000 

Summary Statistics. 

Table 2. Estimation of OLS Parameters. 

 Estimate Std Error t-value P (>|t|) 

Intercept 0.7663 0.3026 2.532 0.01293 

X 0.0049 0.0012 4.031 0.00011*** 

S. E = 0.2211; R-Sq = 28%; R-Sq (Adjusted) = 26.5%; AIC= 85.5591 

Ordinary Least Square Estimate are shown. 

Table 2 shows that the percentage of determination is low 

as a result of the relationship between the dependent variable 

(blood pressure) and the independent variable (body mass 

index). The independent variable explained 28% of the 

variance of the dependent variable while the remaining 72% 

is explained by external (other) factors. Also, the coefficient 

�� = 0.766  while �� = 0.0049  is significant with 0.00011 

probability value. 

The ordinary least square regression equation is 

]`��J	H\I$$9\I	 = 	0.766	 + 	0.0049	]Yj 
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Table 3. Regression Analysis. 

 
Linear Regression Quantile Regression 

Mean 0.25 Quantile 0.50 Quantile 0.75 Quantile 

Intercept 0.7663 0.8119 0.842 0.6700 

X 0.0049 0.0026 0.0044 0.0061 

Pseudo R2 0.7657 0.5291 0.7391 

AIC 78.4395 84.9314 76.0153 

Model Estimate are shown. 

At 25
th

 quantile @;<I\kI3<	 = 	0.8119  which is the 

predicted value of the 25
th

 quantile of Body Mass Index. 

�(�.�m	4no�6�pq) = 0.0026 indicates the rate of change of the 

25
th

 quantile of the response variable distribution per unit 

changes in the value of the regressors (BMI). In other words, 

at the 25
th

 quantile of the dependent variable, a unit increase 

in the BMI increases the blood pressure of the patient by 

0.0026. 

At 50
th

 quantile @;<I\kI3<	 = 	0.8420  which is the 

predicted value of the 50
th

 quantile of Body Mass Index. 

�(�.m�	4no�6�pq) = 0.0035 indicates the rate of change of the 

50
th

 quantile of the response variable distribution per unit 

change in the value of the regressors (BMI). In other words, 

at the 50
th

 quantile of the dependent variable, a unit increase 

in the BMI increases the blood pressure of the patient by 

0.0035. 

At 75
th
 quantile @;<I\kI3<	 = 	0.6700  which is the 

predicted value of the 75
th
 quantile of Body Mass Index. 

�(�.tm	4no�6�pq) = 0.0061  indicates the rate of change of the 

75
th
 quantile of the response variable distribution per unit 

change in the value of the regressors (BMI). In other words, at 

the 75
th
 quantile of the dependent variable, a unit increase in 

the BMI increases the blood pressure of the patient by 0.0061. 

Table 4. Descriptive Statistics. 

 CO2 GDP POP TR 

Mean 0.317827 1.29E+10 2.595975 54.89554 

Median 0.282309 5.25E+09 2.554408 48.63636 

Maximum 0.680000 6.56E+10 3.213951 116.0484 

Minimum 0.181470 1.22E+09 1.856640 6.320343 

Std. Dev. 0.115701 1.78E+10 0.316475 26.33009 

Skewness 1.540976 1.822173 -0.072891 0.295115 

Kurtosis 5.094683 4.954515 2.493227 2.417675 

Jarque-Bera 34.13673 42.04091 0.683592 1.690038 

Probability 0.000000 0.000000 0.710493 0.429549 

For the independent variable, ordinary least squares 

suggest that the variable has a positive influence on the 

dependent variable (High Blood Pressure) with an estimate of 

�� = 0.0049. This implies that high blood pressure increases 

as the level of obesity increases. Quantile regression as well 

confirms this statement but gives a more expanded 

understanding of the influence of the independent variable. 

The influence at the 0.75 quantile with estimates �(�.tm) =
0.0061  seems to be stronger than is suggested by the 

ordinary least squares. 

The goodness of fit for each quantile regression model is 

represented by the value of Pseudo R
2
, as showed in table 3. 

All Pseudo R
2
 values obtained here are more than 70% 

except for the 50
th

 quantile = 0.5291 therefore indicating that 

the proposed model at the 25
th

 and 75
th

 quantile is more 

adequate and could be accepted. The R
2
 value = 0.7657, that 

is 76.57% of the dependent variable can be explained by the 

independent variable with an AIC = 78.4395 at the 25
th

 

quantile. The R
2
 value = 0.5291, that is 52.91% of the 

dependent variable can be explained by the independent 

variable with an AIC = 84.9314 at the 50
th
 quantile and the 

R
2
 value = 0.7391, that is 73.91% of the dependent variable 

can be explained by the independent variable with an AIC = 

76.0153 at the 75
th
 quantile. Therefore, the quantiles (25

th
 

and 75
th

) with smaller AIC values presents the more adequate 

model that could be accepted for forecasting or prediction as 

compared to the AIC value of the OLS = 85.5591. 

Also, we determined the value of the MSE (mean Square 

Error) to ensure that parameter estimated have small bias and 

small variance. Table 5 below presents the MSE values of the 

quantile regression method for the parameters estimated at 

corresponding points. 

Table 5. The MSE, Bias and Variance Value for OLS and different quantiles. 

 MSE Bias Variance 

OLS 0.6052 0.2992 0.5087 

25th Quantile 0.4130 0.2507 0.3883 

50th Quantile 0.5329 0.3025 0.4867 

75th Quantile 0.4577 0.2299 0.4523 

Table 5 above gives information that the parameter 

estimates have small MSE at the 25
th

 and 75
th

 quantiles as 

compared to the 50
th

 quantile and the OLS, so also the bias 

and variance value at the 25
th

 and 75
th

 quantiles. 

Illustrative Date 2: Factors influencing carbon emission at 

different levels of emission. 

Dependent Variable (Y): Carbon Emission. 

Independent Variable (X1): GDP. 

Independent Variable (X2): Trade Openness. 

Independent Variable (X3): Population. 

From table 3, the Jarque Bera P-value, Y which is the 

dependent variable does not follow a normal distribution. To 

this regard, the information above provides the preliminary 

justification for engaging quantile regression. 

Table 6. Estimation of OLS Parameters. 

Variable Estimate Std Error t-value P (>|t|) 

Intercept -6.1369 0.4645 -13.2127 0.0000 

X1 0.2015 0.01880 11.7794 0.0000 

X2 -0.3560 0.45418 -2.3088 0.0247 

X3 0.0711 0.03253 2.1859 0.331 

S= 0.1344; R-Sq = 83.05%; R-Sq (Adjusted) = 82.12%; AIC = 70.3499 

Ordinary Least Square Estimate are shown. 



 American Journal of Mathematical and Computer Modelling 2022; 7(4): 49-54 53 

 

Table 6 shows that the percentage of determination is high 

as a result of the relationship between the dependent variable 

(Y) and the independent variables (X1, X2, X3). The 

independent variables explained 83.05% of the variance of 

the dependent variable while the remaining 16.98% is 

explained by external (other) factors. Also, the coefficient 

�� = −6.1369	while �� = 0.2215	is significant with 0.0000 

probability value and �� = −0.3560 , �u = 0.0711  are not 

significant. 

The ordinary least square regression equation is 

�:\v�;		?@$$@�; = 	−6.1369 + 	0.2215	wxH − 0.3560	Xy + 0.0711	HyH 

Table 7. Regression Analysis. 

 
Linear Regression Quantile Regression 

Mean P (>|t|) 0.25 Quantile P (>|t|) 0.50 Quantile P (>|t|) 0.75 Quantile P (>|t|) 

Intercept -6.1369 0.0000 -5.9343 0.0000 -6.1605 0.0000 -5.8112 0.0000 

X1 0.2015 0.0000 0.1965 0.0000 0.2196 0.0000 0.2109 0.0000 

X2 -0.3560 0.0247 -0.3859 0.0096 -0.3636 0.0923 -0.2951 0.2343 

X3 0.0711 0.331 0.1406 0.0672 0.1055 0.1454 0.0523 0.1208 

Pseudo R2 0.7133 0.4981 0.7033 

AIC 66.1729 68.6137 65.0418 

Model Estimate are shown. 

At 25
th

 quantile, a percentage change in X1 (GDP) 

increases Y (Carbon Emission) by 0.196%. Also, in 

interpreting the effect of X1 (GDP) on Y (Carbon Emission) 

at the 50
th

 quantile, at the median, a percentage change in X1 

(GDP) increases Y (Carbon Emission) by 0.22%. The effect 

of X1 (GDP) on Y (Carbon Emission) at 0.75 quantile shows 

that a percentage change in X1 (GDP) increases Y (Carbon 

Emission) by 0.21%. 

At 25
th

 quantile @;<I\kI3<	 = 	−5.9343	 which is the 

predicted value of the 0.25 quantile of GDP. �(�.�m	4no�6�pq) =
0.1965 indicates the rate of change of the 25

th
 quantile of the 

response variable distribution per unit change in the value of 

the regressors (GDP). In other words, at the 25
th

 quantile of 

the dependent variable, a unit increase in the GDP increases 

the Carbon Emission by 0.1965. 

At 50
th

 quantile @;<I\kI3<	 = 	−6.1605	 which is the 

predicted value of the 50
th

 quantile of GDP. �(�.m�	4no�6�pq) =
0.2196	indicates the rate of change of the 50

th
 quantile of the 

response variable distribution per unit change in the value of 

the regressors (GDP). In other words, at the 50
th

 quantile of 

the dependent variable, a unit increase in GDP increases the 

Carbon Emission by 0.2196. 

At 75
th

 quantile @;<I\kI3<	 = 	−5.8112  which is the 

predicted value of the 75
th

 quantile of GDP. �(�.tm	4no�6�pq) =
0.2109 indicates the rate of change of the 75

th
 quantile of the 

response variable distribution per unit changes in the value of 

the regressors (GDP). In other words, at the 75
th

 quantile of 

the dependent variable, a unit increase in GDP increases the 

Carbon Emission by 0.2109. 

For the independent variable, ordinary least squares 

suggest that the variable GDP has a positive influence on the 

dependent variable (Carbon Emission). This implies that 

Carbon Emission increases as the GDP level increases. 

Quantile regression as well confirms this statement but gives 

a more expanded understanding of the influence of the 

independent variable. The influence at the 0.75 quantile with 

estimates �(�.tm) = 0.2109  seems to be stronger than is 

suggested by the ordinary least squares. 

The goodness of fit for each quantile regression model is 

represented by the value of Pseudo R
2
, as showed in table 7. 

All Pseudo R
2
 values obtained here are more than 70% 

except for the 50
th

 quantile = 0.498122 therefore indicating 

that the proposed model at the 25
th

 and 75
th

 quantile is 

adequate and could be accepted. The R
2
 value = 0.7133, that 

is 71.33% of the dependent variable can be explained by the 

independent variable with an AIC = 66.1729 at the 25
th

 

quantile. The R
2
 value = 0.4981, that is 49.81% of the 

dependent variable can be explained by the independent 

variable with an AIC = 68.6137 at the 50
th
 quantile and the 

R
2
 value = 0.7033, that is 70.33% of the dependent variable 

can be explained by the independent variable with an AIC = 

65.0418 at the 75
th
 quantile. Therefore, the quantiles (25

th
 

and 75
th

) with smaller AIC values presents the more adequate 

model that could be accepted for forecasting or prediction as 

compared to the AIC value of the OLS = 70.3499. 

Also, we determined the value of the MSE (mean Square 

Error) to ensure that parameter estimated have small bias and 

small variance. Table 8 below presents the MSE values of the 

quantile regression method for the parameters estimated at 

corresponding points. 

Table 8. The MSE, Bias and Variance Value for different quantiles. 

 MSE Bias Variance 

OLS 0.5322 0.6996 0.0617 

25th Quantile 0.4130 0.4024 0.0288 

50th Quantile 0.5329 0.7441 0.0792 

75th Quantile 0.4577 0.5582 0.0397 

Table 8 above gives information that the parameter 

estimates have small MSE at the 25
th

 and 75
th

 quantiles as 

compared to the 50
th

 quantile and the OLS, so also the bias 

and variance value at the 25
th

 and 75
th

 quantiles. 

4. Conclusion 

Frequently, the research question can define whether 

quantile regression is desired over linear regression, as most 

areas of research is interested with explicit quantiles of the 

conditional distribution of an outcome variable rather than 

simply the conditional mean. Linear regression is mostly 
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used and easily understood method of analysis and especially 

when the assumptions are met to aid give full description of 

the relationship between dependent and independent. 

Quantile regression offers a widespread approach for 

completing the regression picture as it goes beyond the 

primary goal of determining just the conditional mean, and 

enables one to spot reasonable questions of the relationship 

between the response variable and explanatory variable at 

any given quantile of the conditional distribution. 

This study used quantile regression and the traditional 

ordinary least square regression method for the analysis of 

two sets of datasets. The estimates across the quantile 

regression allows us to study the impact of predictors on 

different quantiles of the dependent variable, and hence 

provide us with a complete picture of the relationship 

between the dependent and independent variables. This study 

also presents results that shows that quantile regression is 

able to produce small value of MSE, bias, variance and AIC 

hence it could be concluded that quantile regression methods 

produce efficient results and could be an alternative 

technique against the traditional ordinary least square 

regression in investigating the relationship between variables. 
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