
American Journal of Mathematical and Computer Modelling

2024; Vol. 9, No. 1, pp. 1-8

https://doi.org/10.11648/j.ajmcm.20240901.11

*Corresponding author:

Received: 8 March 2024; Accepted: 3 April 2024; Published: 28 April 2024

Copyright: © The Author(s), 2024. Published by Science Publishing Group. This is an Open Access article, distributed

under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0/), which

permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Research Article

Enhanced MNB Method for SPAM E-mail/SMS Text

Detection Using TF-IDF Vectorizer

Anoushka Dasgupta, Shideh Yavary Mehr
*

Department of Computer Science, University of Wisconsin-Milwaukee, Milwaukee, USA

Abstract

Spam, whether in the form of SMS or email, poses significant threats by compromising user privacy and potentially leading to

unauthorized access to personal data. In the era of smartphones, where users store sensitive information, the risk of cyber-attack

through spam messages is heightened. This research addresses the pressing issue of spam SMS and email detection using a dataset

comprising 5574 messages from reputable sources. The collection includes contributions from the National University of Singapore

SMS Corpus, Grumble text Website, Caroline Tag’s PhD Theses, and SMS Spam Corpus v.0.1 Big. With a meticulous approach

encompassing data cleaning, balancing, preprocessing, and exploratory data analysis, the research employs the TF-IDF (Term

Frequency and Inverse Document Frequency) vectorizer to enhance the model’s ability to capture the importance of individual words.

This foundational work sets the stage for evaluating various machine learning models, including Support Vector Machine, Multinomial

Naïve Bayes, Decision Tree, Logistic Regression, Random Forest, AdaBoost, K-Nearest Neighbors, XGBoost, Gradient Boost

Classifier, Bagging Classifier, and Extra Tree Classifier. Notably, the Multinomial Naïve Bayes model emerges as a standout

performer with 100% accuracy and 97% precision in phishing detection. The research introduces an intuitive user interface, facilitating

real-time interactivity for model assessment and offering valuable insights for cybersecurity applications. The study contributes to the

advancement of robust cybersecurity systems, emphasizing precision and accuracy in spam SMS and email text detection.

Keywords

Spam Detection, SMS, Email, Cybersecurity, TF-IDF Vectorizer, Machine Learning, Multinomial Naïve Bayes

1. Introduction

In recent times, the internet has become an integral aspect

of our lives, leading to a surge in email users. However, this

increased reliance on email has given rise to challenges posed

by unsolicited bulk email messages commonly known as

spam. The proliferation of spam emails is primarily driven by

their effectiveness as a medium for advertisements. Spam

emails, unwanted messages sent to recipients, often result

from sharing our email addresses on unauthorized websites.

The consequences of spam are manifold, including inbox

clutter, degradation of internet speed, theft of valuable in-

formation, manipulation of search results, and a significant

waste of time. Despite numerous studies on spam detection

methods, accurately identifying spammers and spam content

remains a challenging task. The existing approaches often

struggle to distinguish spam accurately, and none of them

provide a comprehensive understanding of the benefits of

each element removed. Despite the advancements in network

communication and the utilization of memory space, spam

http://www.sciencepg.com/journal/ajmcm
http://www.sciencepg.com/journal/616/archive/6160901
http://www.sciencepg.com/

American Journal of Mathematical and Computer Modelling http://www.sciencepg.com/journal/ajmcm

2

messages continue to pose a threat and are exploited for var-

ious attacks. Spam emails, categorized as non-self, are not

only used for advertising but may also contain links to

phishing or malware-hosting websites aimed at stealing con-

fidential information. To address these issues, various spam

filtering techniques are employed. The spam filtering tech-

niques are accustomed protect our mailbox from spam mails.

This study incorporates various ML (machine learning)

methods, including SVM (Support Vector Machine), MNB

(Multinomial Naïve Bayes), DT (Decision Tree), LR (Lo-

gistic Regression), RF (Random Forest), AdB (AdaBoost),

KNN (K-Nearest Neighbors), XGBoost, GBC (Gradient

Boost Classifier), BC (Bagging Classifier), and ETC (Extra

Tree Classifier). Notably, the Multinomial Naïve Bayes model

stands out, achieving 100% accuracy and 97% precision in

phishing detection. The research introduces an intuitive user

interface, enabling real-time interaction for model assessment

and providing valuable insights for cybersecurity applications.

The study contributes to the enhancement of robust cyberse-

curity systems, emphasizing precision and accuracy in the

detection of spam SMS and email text.

The paper is organized as follows: Section II covers “Back-

ground and Related Work”. Implementation is defined in the

next section (III). The Results are shown in Section IV. We

complete the paper in Section V which outlines our future work.

2. Background and Related Work

The authors in [1] focus on email header features as effi-

cient indicators for identifying and classifying spam messages.

These features, selected based on their demonstrated perfor-

mance in spam detection, are standardized across major email

providers such as Yahoo Mail, Gmail, and Hotmail. The ob-

jective was to propose a generic mechanism for spam message

detection that can be universally applied.

In [2] authors introduce a novel approach based on the

frequency of word repetition in incoming emails. The key

sentences containing specific keywords are tagged, and the

grammatical roles of the words in these sentences are deter-

mined. Subsequently, a vector is constructed to assess the

similarity between received emails. The classification of

emails is carried out using the K-Means algorithm based on

the determined vectors.

Another study in [3], delves into the prevalence of

cyber-attacks, particularly how phishers and malicious at-

tackers exploit email services to send deceptive messages,

leading to potential financial and reputational losses for target

users. The study employs Bayesian Classifiers, considering

each word in the email and adapting dynamically to evolving

forms of spam. This adaptive approach enhances the system’s

resilience against new spam patterns.

3. Implementation

The proposed SPAM detection system using machine

learning has two phases as shown in Figure 1.

A. Training Phase

In this phase, Spam detection’s training phase involves a

thorough process to boost model accuracy. Beginning with

exploratory data analysis (EDA) for insights, the next crucial

step is featuring extraction. Techniques like lowercase con-

version, tokenization, special character removal, stop words

and punctuation elimination, and stemming collectively craft

meaningful features that encapsulate spam essence. Addi-

tional data preprocessing, such as TF-IDF vectorization, re-

fines the dataset, enhancing the model’s pattern recognition.

The processed data undergoes evaluation, and the

top-performing model, often determined by accuracy, is se-

lected for subsequent phases.

B. Detection Phase

Figure 1. SPAM SMS/Email text detection model.

The detection phase focuses on identifying spam in text

messages using features extracted during training. Employing

a sophisticated approach, a voting classifier combines multi-

ple models for enhanced predictive performance. Imple-

http://www.sciencepg.com/journal/ajmcm

American Journal of Mathematical and Computer Modelling http://www.sciencepg.com/journal/ajmcm

3

mented on a web application, users input text messages for

spam detection, receiving classifications as spam or not spam.

The system further offers insights into potential threats by

analyzing the top contributing words, enhancing transparency

in the detection process. This user-friendly solution aims to

efficiently identify and mitigate spam in text messages.

3.1. Dataset

The dataset is [4] a collection of 5574 spam and legitimate

English text messages from various reputable sources. The

dataset includes contributions from the National University of

Singapore SMS Corpus, Grumbletext Website, Caroline Tag’s

PhD Theses, and SMS Spam Corpus v.0.1 Big. Comprising

4827 legitimate messages and 747 spam messages, the corpus

is publicly accessible, facilitating further investigation into

the realm of spam detection.

3.2. Data Preprocessing

In the data cleaning phase, a meticulous process was em-

ployed to ensure the integrity and coherence of the dataset.

Initial scrutiny using df.info() revealed five columns,

with ’Unnamed: 2,’ ’Unnamed: 3,’ and ’Unnamed: 4’ con-

taining a notable number of missing values. To streamline the

dataset, these columns were promptly dropped [5]. Renaming

the remaining columns to ’target’ and ’text’ for clarity ensued.

The target variable (’ham’ or ’spam’) was then encoded nu-

merically using the Label-Encoder from scikit-learn. Inspec-

tion for missing values and duplicates revealed none in the

target and text columns. However, duplicate entries were

identified and systematically removed, resulting in a final

dataset of 5169 entries and 2 columns (’target’ and ’text’).

This meticulous data cleaning process laid the groundwork for

subsequent analyses and model development. In the explor-

atory data analysis (EDA) phase, our examination of the

preprocessed dataset began with a perusal of the initial entries

through df.head(), offering an initial glimpse into the dataset’s

structure. Investigating the distribution of the target variable

(’ham’ or ’spam’) uncovered a notable class imbalance, with

87% classified as ’ham’ and 13% as ’spam,’ as visualized in a

pie chart. This imbalance underscores the need for careful

consideration in subsequent analyses. To delve deeper into the

dataset’s textual features, we extracted statistical insights such

as the number of characters, words, and sentences in each

entry. Descriptive statistics were computed for the entire

dataset and separately for ’ham’ and ’spam’ categories, re-

vealing nuanced patterns [6]. The utilization of histograms

and pair plots further elucidated the distribution and rela-

tionships among these features. Particularly, the numcharac-

ters’ and ’numwords’ features exhibited distinctive patterns

for ’ham’ and ’spam’ categories, suggesting potential dis-

criminative power in these features for classification. More-

over, a correlation heatmap was generated to assess relation-

ships between numerical features.

The resulting visualizations provided a holistic under-

standing of the dataset’s structural characteristics. The pie

chart underscored the imbalanced nature of the data, setting

the stage for subsequent feature extraction through natural

language processing (NLP) [7]. Histograms depicting the

distribution of ’numcharacters’, ’numwords’, and ’numsen-

tences’ for ’ham’ and ’spam’ categories were instrumental in

revealing variations in text length between the two classes.

The heatmap further illustrated correlations between these

numerical features. These methodologies and their corre-

sponding results serve as indispensable tools in compre-

hending the dataset’s intricacies, aiding in the identification of

potentially discriminatory features for spam classification.

The imbalanced class distribution, highlighted by the pie chart,

signals the necessity for strategic handling during model

development. The histograms and pair plots offer visual in-

sights into the variations in textual characteristics be-

tween ’ham’ and ’spam,’ providing a basis for informed fea-

ture selection. The correlation heatmap contributes to the

understanding of inter-feature relationships, guiding subse-

quent steps in model refinement. In essence, this comprehen-

sive approach to EDA is instrumental in shaping the trajectory

of the subsequent model development process and under-

scores the significance of nuanced insights derived from di-

verse analytical techniques.

We also use different preprocessing approaches for the

different classifiers. These approaches are based on their

requirement of input data. The following is a brief description

of these approaches. The preprocessing approach is based on

the following items:

A) Using Term Frequency

Inverse Document Frequency (tf-idf): The frequency of a

word's occurrence within a specific document is referred to as

Term Frequency. Conversely, the Inverse Document Fre-

quency measures how often a word appears across a collec-

tion of documents, as noted in [8]. The TF-IDF method as-

signs weights to words based on their significance, giving less

weight to common words and more weight to rare ones. Our

initial steps included eliminating stopwords, uppercase letters,

non-alphanumeric symbols, and extraneous punctuation.

Subsequently, we normalized similar words (for instance,

changing 'desks' to 'desk'). Following this preprocessing, we

employed sklearn's Tfidf Vectorizer to transform the refined

text into TF-IDF attributes, creating a vocabulary of up to

5000 terms for each entry. This process involves generating a

count vector and then a TF-IDF matrix.

B) Using Tokenizer

When processing textual data, a fundamental step is to di-

vide the text into individual words, referred to as tokens. This

division is known as tokenization. Keras offers a Tokenizer

class that serves to vectorize texts, essentially converting texts

into sequences of integers where each integer represents a

word's index based on its frequency rank in the dataset. To

break down text into a list of words, Keras provides the

text_to_word_sequence() function. By default, this function

separates words based on spaces, transforms all text to low-

http://www.sciencepg.com/journal/ajmcm

American Journal of Mathematical and Computer Modelling http://www.sciencepg.com/journal/ajmcm

4

ercase, and removes punctuation. The tokenization process is

tailored to only include the most frequent words in the corpus,

setting a limit at 5000 words for our purposes. After imple-

menting one of these tokenization strategies on our datasets

for various classifiers, we modified the representation of the

first column. Specifically, we converted 'ham' and 'spam'

categories into numerical values, 0 and 1, respectively, using

sklearn’s LabelEncoder.

3.3. Design

The experimental setup consists of a DELL laptop with

an12th Gen Intel® Core™ i7-12700H CPU (24 MB cache, 14

cores, 20 threads, up to 4.70 GHz Turbo) processor with

16GB of RAM and 512GB of Solid-State Drive. Python is the

programming language used. Jupyter Notebook, which sup-

ports over 40 programming languages including Python, is

used. Jupyter is an interactive web-based interface for the

development of notebooks, code, and data management,

providing a flexible platform to tailor and organize data sci-

ence projects.

3.4. Machine Learning Algorithms

3.4.1. Logistic Regression (LR)

Logistic regression is a type of supervised learning. Ac-

cording to the dataset, it is used to predict the categorical

dependent variable "label." A categorical dependent variable’s

output is predicted using logistic regression. Binomial Lo-

gistic regression is used to solve classification problems by

fitting an “S"-shaped logistic function that predicts two

maximum values (0 or 1). The Logistic Regression equation

with probability p(x) is as below:

𝑃(𝑥) =
𝑒𝑎+𝑏𝑥

1+ 𝑒𝑎+𝑏𝑥 ; − ∞ < 𝑥 < ∞

3.4.2. K-Nearest Neighbor (KNN)

The k-nearest neighbor (KNN) algorithm, a supervised ma-

chine learning technique, addresses both classification and

regression issues. It is effective for datasets that are clearly

separated or non-linear. KNN employs a voting system to as-

sign a class to a new observation, where the majority vote dic-

tates the class assignment. For instance, with K set to one, the

class is determined by the closest neighbor. If K is set to ten, the

classification is influenced by the ten closest neighbors [9, 10].

3.4.3. Support Vector Machine (SVM)

The Support Vector Machine (SVM) is a popular discrim-

inative classifier employed extensively for classification

purposes. This algorithm represents each piece of data as a

point within an n-dimensional space, with each feature's value

corresponding to a specific coordinate's value. It proceeds to

establish a hyperplane that divides the dataset into two distinct

groups, each representing a different classification. The points

that are closest to the hyperplane from both groups are posi-

tioned as far away from it as possible, effectively maximizing

the margin between the two classes.

3.4.4. Multinomial Naive Bayes (MNB)

This classification method utilizes Bayes' theorem, under-

pinning its approach with the assumption of predictor inde-

pendence. Essentially, the Naive Bayes (NB) classifier pre-

supposes that the presence of a specific feature within a class is

independent of any other feature's presence. This means that,

regardless of potential dependencies among features or their

relevance to the existence of another feature, the NB classifier

treats each characteristic as contributing independently to the

overall probability. This assumption allows the Naive Bayes

classifier to perform effectively, especially in scenarios in-

volving high-dimensional input data. It is celebrated for its

simplicity and robustness. An evolved variant of the NB clas-

sifier is the Multinomial Naive Bayes (MNB), which distin-

guishes itself by discounting the correlation between document

length and its classification. It employs a multinomial distribu-

tion, making it particularly effective for discrete data, like word

counts in text documents. In essence, while the NB classifier

operates on the principle of conditional independence among

features, the MNB classifier, as a specific iteration of NB,

leverages a multinomial distribution for feature handling.

3.4.5. Decision Tree (DT)

Decision Trees (DT) are a supervised learning algorithm

often used for classification tasks, effective with both cate-

gorical and continuous variables. They initiate by dividing the

population into several homogeneous groups based on the

most crucial attributes or independent variables. As a

non-parametric method, Decision Trees do not require the

assessment of outlier presence or the necessity for data to

exhibit linear separation.

3.4.6. Random Forest (RF)

Random Forest is a terminology applied to a group of de-

cision trees. This classifier embodies an ensemble learning

approach by aggregating multiple decision trees. To classify a

new item, a voting mechanism is employed where each tree

casts a vote for a particular class. The class receiving the

majority of votes determines the final classification label.

3.4.7. AdaBoost (AdB)

AdaBoost, short for Adaptive Boosting, is a composite

machine learning technique designed to enhance the efficacy

of a classification algorithm by integrating multiple weak

classifiers into a single robust classifier. The overall predic-

tion of the boosted classifier is derived from the weighted

aggregate of all weak classifiers' predictions. One limitation

of this method is its increased model construction time, de-

spite achieving higher accuracy in its predictions.

http://www.sciencepg.com/journal/ajmcm

American Journal of Mathematical and Computer Modelling http://www.sciencepg.com/journal/ajmcm

5

3.4.8. XGBoost

XGBoost, short for Extreme Gradient Boosting, is a pow-

erful and widely-used machine learning algorithm known for

its exceptional performance in predictive modeling tasks. It

belongs to the ensemble learning family, specifically gradient

boosting, and employs a boosting technique to combine the

strengths of multiple weak learners, often decision trees, to

create a robust and accurate predictive model. XGBoost in-

troduces regularization terms and parallel processing to en-

hance its efficiency and generalization capability. Renowned

for its scalability, speed, and ability to handle complex da-

tasets, XGBoost has become a popular choice across various

domains, including classification, regression, and ranking

problems, making it a staple in machine learning pipelines and

data science competitions [14, 17].

3.4.9. Extra Trees Classifier (ETC)

ETC is an ensemble learning algorithm that belongs to the

Random Forest family. Like Random Forests, ETC builds

multiple decision trees during training and outputs the mode

of the classes for classification tasks. What sets ETC apart is

its extreme randomization strategy, where it selects random

subsets of features at each decision node, leading to a more

diverse set of trees. This heightened level of randomness

enhances the model’s robustness against overfitting and

makes it particularly effective in handling noisy or

high-dimensional datasets. ETC is widely utilized for classi-

fication tasks due to its simplicity, efficiency, and ability to

deliver competitive results without requiring extensive hy-

perparameter tuning [16].

3.4.10. Bagging Classifier (BC)

The Bagging Classifier is an ensemble learning algorithm

that enhances the performance and stability of base classifiers

by training multiple instances on different subsets of the train-

ing data. Employing a bagging (Bootstrap Aggregating) strat-

egy, it leverages random sampling with replacement to create

diverse subsets for each classifier. In scikit-learn, this me-

ta-estimator can be applied to any base classifier, and its pre-

dictions are aggregated through averaging for regression or

voting for classification. With parameters like n estimators

determining the number of base classifiers and max samples

controlling the size of training subsets, the Bagging Classifier is

a versatile tool for mitigating overfitting and improving gener-

alization across various ma chine learning tasks [12, 15, 17].

3.4.11. Gradient Boosting Classifier (GBC)

The Gradient Boosting Classifier is a powerful ensemble

learning algorithm that belongs to the family of boosting

methods. It builds a series of weak learners, typically decision

trees, sequentially, with each subsequent learner focusing on

correcting the errors made by the previous ones. The model

assigns higher weights to instances that are misclassified, cre-

ating a strong predictive model through the combination of

multiple weak learners. The algorithm’s flexibility and ability

to capture complex relationships in data make it well-suited for

both classification and regression tasks. Key parameters in-

clude the learning rate, controlling the contribution of each tree,

and the number of trees (n estimators). While computationally

more expensive than some algorithms, the Gradient Boosting

Classifier often delivers high accuracy and robust performance,

particularly when fine-tuned effectively [11-13].

3.5. Execution

The algorithm outlined, encapsulates a comprehensive

two-phase approach, leveraging exploratory data analysis,

feature extraction, and a voting classifier ensemble during

training and detection phases, ultimately enhancing the ac-

curacy and transparency of the SPAM detection system.

Figure 2. SPAM detection algorithm.

The implementation phase leverages Streamlit, a us-

er-friendly Python library, to deploy and interact with the

spam detection models seamlessly. Streamlit provides a

http://www.sciencepg.com/journal/ajmcm

American Journal of Mathematical and Computer Modelling http://www.sciencepg.com/journal/ajmcm

6

convenient platform for creating web applications with

minimal coding effort. The user interface is designed to ena-

ble users to input text messages for classification as either

spam or not spam. This intuitive interface enhances user ex-

perience and allows for real-time interaction with the spam

detection functionality.

Figure 3. The above screenshot displays an example where the application detects it as spam, also provides the top contributing words sup-

porting the decision.

Figure 4. The above screenshot displays an example where the application detects it as spam, also provides the top contributing words sup-

porting the decision.

The Streamlit application incorporates the best-performing

models, Multinomial Naive Bayes (MNB) and Extra Tree

Classifier (ETC), to ensure reliable and accurate spam detec-

tion. Users can input messages, triggering the models to pre-

dict whether the text is spam or not. Additionally, the appli-

cation offers insights into potential threats by analyzing and

displaying the top contributing words, contributing to trans-

parency in the detection process. The implementation using

http://www.sciencepg.com/journal/ajmcm

American Journal of Mathematical and Computer Modelling http://www.sciencepg.com/journal/ajmcm

7

Streamlit serves as an accessible and user-friendly tool, ca-

tering to both researchers and practitioners in the field of

cybersecurity. It not only showcases the efficacy of the mod-

els but also empowers users to actively engage with and

evaluate the spam detection system in a real-world context.

4. Results

The research presents a comprehensive comparison of

various machine learning models, including Support Vector

Machine (SVM), Multinomial Naive Bayes (NB), Decision

Tree, Logistic Regression, Random Forest, AdaBoost, K

Nearest Neighbors, XGBoost, Gradient Boost Classifier,

Bagging Classifier, and Extra Tree Classifier. Figure 4 visu-

ally represents the precision and recall scores of each model,

with Multinomial Naïve Bayes (MNB) and Extra Trees Clas-

sifier (ETC) emerging as the top performers. The evaluation

metrics employed in this study encompassed Accuracy and

Precision scores, providing a comprehensive assessment of

model performance.

Figure 5. Graph representing the accuracies and precision of each

model.

The above comparison graph and table was developed us-

ing the accuracy metric as explained below. Accuracy: Ac-

curacy is the ratio of correct predictions out of all predictions

made by an algorithm. It can be calculated by dividing preci-

sion by recall or as 1 minus false negative rate (FNR) divided

by false positive rate (FPR).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (1)

Precision or positive predictive value: Precision is the ratio

of true positives over the sum of false positives and true neg-

atives. It is also known as a positive predictive value.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2)

Where TP and TN are as follows:

TP: number of true positives, spam text that is classified as

such.

TN: number of true negatives, not spam text that are clas-

sified as such.

FP: number of false positives, not spam text that are clas-

sified as bad.

FN: number of false negatives, spam text that are classified

as good.

The Multinomial Naive Bayes is the best model out of all

Machine Learning Models used in the proposed system,

which is used to detect spam or not spam., Multinomial Naive

Bayes with its high precision and high accuracy, is ideal for

this classification problem.

Figure 6. Table with the accuracy and precision results of each ml

algorithm.

5. Conclusion and Future Work

The implemented spam detection system harnesses the

power of various machine learning algorithms, such as

Support Vector Machine, Multinomial Naïve Bayes, Deci-

sion Tree, Logistic Regression, Random Forest, AdaBoost,

K-Nearest Neighbors, XGBoost, Gradient Boost Classifier,

Bagging Classifier, and Extra Tree Classifier. The utilization

of exploratory data analysis, feature extraction techniques,

and thorough preprocessing, including the application of

TF-IDF vectorization, contributes to the system’s effec-

tiveness in distinguishing between spam and non-spam

messages. Notably, the Multinomial Naïve Bayes model

emerges as a standout performer, exhibiting high accuracy

and precision in phishing detection. The user-friendly in-

terface developed with Streamlit enhances the user experi-

ence, allowing interactive assessments of model perfor-

mance. Evaluation metrics, including accuracy and precision

scores, attest to the system’s efficiency and discriminatory

power. The strategic choice of Multinomial Naïve Bayes and

http://www.sciencepg.com/journal/ajmcm

American Journal of Mathematical and Computer Modelling http://www.sciencepg.com/journal/ajmcm

8

Extra Trees Classifier underscores their exceptional per-

formance in identifying and combating spam in text mes-

sages, emphasizing the system’s contribution to robust cy-

bersecurity measures.

In the realm of future work, several promising avenues can

be pursued to enhance the capabilities of the implemented

spam detection system. One compelling direction is the ex-

ploration of advanced language representation models, with

particular emphasis on transformers like BERT. Investigating

how models like GPT (Generative Pre-trained Transformer)

or RoBERTa could contribute to improved understanding and

detection of nuanced linguistic patterns within spam messages

holds significant potential. Additionally, the integration of

novel pre-processing techniques, feature engineering meth-

odologies, and ensemble learning strategies could further

elevate the system’s overall performance. Considering the

dynamic nature of spam tactics, ongoing research into ex-

plainable AI (XAI) methods will be instrumental in providing

transparent insights into the decision-making processes of the

model. Furthermore, cross-domain adaptation studies could

extend the system’s applicability to diverse linguistic contexts

and communication channels. Finally, exploring the integra-

tion of cutting-edge techniques in natural language processing

and machine learning remains a promising avenue for ad-

vancing the effectiveness and adaptability of the spam detec-

tion framework.

Abbreviations

GPT: Generative Pre-trained Transformer

MNB: Multinomial Naive Bayes

ETC: Extra Tree Classifier

SVM: Support Vector Machine

DT: Decision Tree

LR: Logistic Regression

RF: Random Forest

AdB: AdaBoost

KNN: K Nearest Neighbors

GBC: XGBoost, Gradient Boost Classifier

BC: Bagging Classifier

Conflicts of Interest

The authors declare no conflict of interest.

References

[1] H. Najadat, N. Abdulla, R. Abooraig, and S. Nawasrah, “Mo-

bile sms spam filtering based on mixing classifiers,” Interna-

tional Journal of Advanced Computing Research, vol. 1, pp. 1–

7, 2014.

[2] Y. Yang and S. Elfayoumy, “Anti-spam filtering using neural

networks and Bayesian Classifiers,” 2007.

[3] T. A. Almeida, J. M. G. Hidalgo, and A. Yamakami, “Contri-

butions to the study of sms spam filtering: new collection and

results,” in Proceedings of the 11th ACM symposium on

Document engineering, 2, pp. 259–262.

[4] “Uci machine learning repository: Sms spam collection da-

taset.”

https://www.kaggle.com/uciml/sms-spam-collectiondataset

[5] S. J. Delany, M. Buckley, and D. Greene, “Sms spam filtering:

Methods and data,” Expert Systems with Applications, vol. 39,

no. 10, pp. 9899 9908, 2012.

[6] I. Murynets and R. P. Jover, “Analysis of sms spam in mobility

networks,” vol. 3, 2013.

[7] P. P. Chan, C. Yang, D. S. Yeung, and W. W. Ng, “Spam fil-

tering for short messages in adversarial environment,” Neu-

rocomputing, vol. 155, pp. 167–176, 2015.

[8] T. K. Kriti Agarwal, “Email spam detection using integrated

approach of naïve bayes and particle swarm optimization,” 2018.

[9] D. Sahoo and S. C. Liu, Chenghaoand Hoi, “Malicious url

detection using machine learning: A survey,” vol.

abs/1701.07179. arXiv, 2017.

[10] M. Khonji, Y. Iraqi, and A. Jones, “Phishing detection: A

literature survey,” vol. 15, no. 4. IEEE, 2013, pp. 2091–2121.

[11] A. S. Manjeri, K. R., A. M. N. V., and P. C. Nair, “A machine

learning approach for detecting malicious websites using url

features.” Elsevier, 2019, pp. 555–561.

[12] R. Patgiri, H. Katari, R. Kumar, and D. Sharma, “Empirical

study on malicious url detection using machine learning,” in

Distributed Computing and Internet Technology. Springer In-

ternational Publishing, 2019, pp. 380–388.

[13] J. Khan, H. Mohammd, Q. Niyaz, V. K. Devabhaktuni, S. Guo,

and U. Shaikh, “A hybrid machine learning approach to net-

work anomaly detection,” in 2019 IEEE 10th Annual Ubiqui-

tous Computing, Electronics & Mobile Communication Con-

ference (UEMCON). IEEE, 2019, pp. 0347–0352.

[14] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Identifying

suspicious urls: an application of large-scale online learning,”

in Proceedings of the 26th Annual International Conference on

Machine Learning, ser. ICML ’09. Association for Computing

Machinery, 2009, p. 681–688.

[15] B. Eshete, A. Villafiorita, and K. Weldemariam, “Binspect:

Holistic analysis and detection of malicious web pages,” in

Security and Privacy in Communication Networks. Springer,

2013, pp. 149–166.

[16] S. Purkait, “Phishing counter measures and their effectiveness

– literature review,” vol. 20, no. 8. Emrald Group Publishing

limited, 2012, pp. 382–420.

[17] A. Singh, “Dataset of malicious and benign webpages.”

Mendeley Data, 2020.

http://www.sciencepg.com/journal/ajmcm

